
The Processes of Joining in Global Distributed Software
Projects

Israel Herraiz, Gregorio Robles, Juan José Amor,
Teófilo Romera and Jesús M. González Barahona∗

Universidad Rey Juan Carlos
Madrid, Spain

{herraiz, grex, jjamor, teo, jgb}@gsyc.escet.urjc.es

ABSTRACT
Libre (free / open source) software is a good example of
global software development. Thousands of projects, in a
wide range of domains which involve hundreds of thousands
of developers and contributors from all around the world.
Some large (both in size and developer community) libre
software projects have shown evidence of producing code
with complete functionality and fast evolution (with linear
or superlinear growth), while maintaining low defect den-
sity. Many companies are exploring how to benefit from
this situation, considering several approaches related to li-
bre software development. For instance, some of them have
hired full-time developers, focusing their work on some libre
software projects they consider strategic.

However, before joining the core development team of the
project, these hired developers have to follow a process of
software comprehension, and get used to the rules and com-
munication mechanisms used in the project. We were inter-
ested in the differences between this case and that of volun-
teer developers working in the same project, Therefore, we
studied the duration and basic characteristics of this joining
process for the developers of GNOME (a well known, large,
libre software project). In our analysis, we have found two
groups with clearly different joining patterns. Moreover,
we have related those patterns to the different behaviors of
volunteer and hired developers: volunteers tend to follow a
step-by-step joining process, while hired developers usually
experience a “sudden” integration. Some reasons for this
different behavior are also discussed.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—program-

∗This work has been funded in part by the European Com-
mission, under the CALIBRE CA, IST program, contract
number 004337. Israel Herraiz has been supported in part by
Consejeria de Educación of Comunidad de Madrid and Eu-
ropean Social Fund, under grant number 01/FPI/0582/2005

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

ming teams, time estimation; K.6.3 [Management of com-
puting and information systems]: Software Manage-
ment—software development, software process

General Terms
Management, Measurement, Human Factors

Keywords
global software development, libre software, membership in-
tegration, empirical studies, onion model

1. INTRODUCTION
Libre (free, open source)1 software has gained a lot of

attention from the public and the software engineering com-
munity during the last years. Libre software development
processes seem to be better in the sense of fast growth [4] and
low defect density [8]. Because of these and other reasons,
some companies are interested in libre software projects,
maybe allocating employees to contribute in a libre software
project which is strategic for the company, maybe outsourc-
ing the development and trying to spin off a new community
around a product released as libre software.

We have focused on the first case, and have analyzed the
situation in GNOME, a well known and studied [3, 7] libre
software project. GNOME is sponsored by several compa-
nies via its foundation2. These companies are interested in
the success of GNOME, and in most cases contribute to the
development with full time employees.

In order to be able of improving and increasing the func-
tionality (in other words, to be able of writing code), these
hired developers must comprehend a large software arti-
fact, and learn the communication mechanisms used by the
project. As it is often found in libre software projects, the
main communication stream in GNOME is its collection of
mailing lists. Most of the feedback is managed through a
bug tracking system (Bugzilla), and all the code is stored
in a version control system (CVS, at the time of writing
this paper, switching to Subversion). Therefore, these de-
velopers must read the source code of the module they are
1Through out this paper we will use the term “libre soft-
ware” to refer to any code that conforms either to the def-
inition of “free software” (according to the Free Software
Foundation) or “open source software” (according to the
Open Source Initiative).
2See http://foundation.gnome.org.

interested in contributing to, and the corresponding mailing
lists, and be aware of reported feedback in the bug track-
ing system. These activities leave some traces that we can
measure and record for further analysis, being able of es-
timating the duration of the learning process (measured as
the delay between the first contact with the project, and the
first contribution to its code).

The structure of this paper is as follows. We start with a
review of related work. After it, the reader can find a section
presenting the hypothesis and research targets defined for
the study, followed by another one describing the method-
ology and the data sources that have been used. Next, the
results of the study are presented, and briefly discussed. The
paper ends with a section with conclusions and further lines
of research.

2. RELATED RESEARCH
To the knowledge of the authors there has not been any

other paper that specifically targets joining processes and
strategies in libre software projects from an empirical point
of view, at least from the software engineering point of view.
From the innovation research area we can nonetheless cite
von Krogh et al. [11], which has targeted the joining and
specialization process that occurs in libre software projects
and how this affects innovation. The authors of this paper
studied the case of the Freenet project (which develops a
peer-to-peer system), and identified the tasks that develop-
ers usually fulfill when entering a project. For instance, they
found that there exists an implicit “joining script” given by
the level and type of activity, which makes the integration
of new members more likely to be successful.

Probably the most well known model about the process
of joining a libre software project is the ‘onion model’ [1],
which represents how actors are positioned in communities
as core developers, bug fixers and reporters, mailing lists
contributors or plain users (see figure 1). Some studies have
already reported and quantified this structure for several li-
bre software projects ([8] for the Apache httpd server and
the Mozilla web browser, [2] for the FreeBSD distribution).
According to these studies the core is composed of a small
group of about a dozen developers. Surrounding the core
group there is a group of contributors, about an order of
magnitude larger, that send bug fixes and eventually sub-
mit some code. Still an order of magnitude larger is the
number of casual contributors who occasionally report bugs
or perform other small tasks. Finally, we find the surround-
ing user community which may serve as a pool for future
developers or casual contributors.

The onion model will be very important for our study,
since we are going to characterize our results in accordance
to it. But it lacks of a characteristic which is essential for
our purposes: it is a static picture. It has been observed in
libre software projects that the core group does not persist
for long periods of time, but that there are new genera-
tions taking the lead over [5]. In this regard, the model has
been complemented by Ye et al. with a more theoretical
identification and description of the roles in it, adding dy-
namism [12] to the original model. According to this idea,
a core developer is supposed to go through all those roles,
starting as a user, until she eventually reaches the core.

Jensen and Scacchi [6] have also studied and modeled the
processes of role migration for some libre software commu-
nities, focusing in the case of end-users who become devel-

Mailing list

Report bugs
Fix bugs

Developer
Core

User

Figure 1: The Onion model

opers for some projects selected as case studies. They have
found different paths for the same process, and concluded
that the organizational structure of the studied libre soft-
ware projects are very dynamic in comparison to traditional
software development organizations. In comparison to this
work, they have identified a richer set of roles (for instance,
“code sheriff” in the Mozilla community) that even include
marketing and governance issues. In this paper we will focus
only on development activities.

3. ASSUMPTIONS AND RESEARCH
TARGETS

The base assumption of our study is that the process fol-
lowed by a developer before making it to the core group,
takes him through all the outer roles described by the onion
model. This is a a trajectory that goes sequentially from
outer positions (within the user base) to the most inner po-
sitions (in the core group). In other words, we suppose that:

• A developer starts as a passive user. At this stage she
occasionally visits the project’s web site, and maybe
reads mailing lists. Since at this moment she will not
submit any e-mail message nor bug reports, activity
cannot be traced.

• If the developer becomes familiar to the project and
can be classified as an advanced user, she may occa-
sionally send some messages to mailing lists (which can
be tracked). At this stage the program comprehension
has started, since some understanding of the software
is needed to participate in discussions.

• Having at least some partial knowledge of the project,
she may start to report bugs or submit comments and
later even fix some of them.

• If the contributions are meaningful, usually the next
step for the developer is to be given an account with
write access to code repository of the project through
its version control system. The developer will then be
able to commit code, activity which is also traceable.

• If the developer collaborates in the project with a high
level activity during a certain amount of time, she may
eventually be considered as a part of the core group.

Our main goal in this paper is to verify if the described
sequence can be observed in real cases, and under which
circumstances. For that, we will characterize that sequence
by observing activity in mailing lists, bug tracking systems
and version control repositories.

In addition, the empirical study is designed to quantify
other aspects of this process. Specifically, this research was
targeted to answer the following questions:

• Is the onion model a good representation of the joining
process of a libre software developer?

• If it is, how long does it take to go through the different
steps of integration?

• Do different patterns (different sequence or timing) ex-
ist?

• If different patterns are identified, how does this de-
pend on the ‘nature’ of the developer? Is the integra-
tion process the same for volunteers and employees?

4. METHODOLOGY
Our study focus both on the whole population of develop-

ers of GNOME and on a sample of selected developers who
have been studied with more detail.

For each user in the CVS (the popular version control
system, also used in GNOME), we computed the dates of
the first and last commit. Then we estimated the addresses
she was using in the mailing list, and computed the dates
of the first and last message in the mailing lists. Last we
matched the CVS user with the user in the Bugzilla and we
queried the dates of the first and last bug reports.

This was made for the whole population found in the CVS.
But we also focused in a sample of selected developers who
meet certain criteria (given below). For each developer in
this sample we computed the same dates than for the whole
population, but more carefully, making sure that all the e-
mail addresses, and Bugzilla and CVS users corresponded
to the studied developer. We also computed the dates of
the first and last bug fixes3.

The dates of the first instances of these events would be
used to computed the progress metric (and thus the duration
of the different stages in membership integration).

With this information we are able to verify whether the
progress metrics comply with the progress predicted by the
onion model, both for the whole population and for the se-
lected sample. The results for the population are less reli-
able, as we only estimated the e-mail. Further ahead, for
the selected sample, we also compute statistically this infor-
mation trying to find common patterns, which when found
are analyzed according to the characteristics of each devel-
oper (by getting information about them from members of
the project or indirect evidences).

For the study we have selected the GNOME project, a
desktop environment for UNIX-like systems which was launched

3In our methodology we consider comments on bugs re-
ported in the bug tracking system as fixes. Although this is
not an accurate assumption it provides a further level of in-
volvement by a developer which is enough for our purposes.

in 1997. GNOME can be considered a large project, with
more than 50M lines of code, and almost 800 modules in its
CVS repository. Together with GNOME we have computed
the GIMP, a popular image manipulation program which
is in fact prior to GNOME and whose GTK+ tool kit was
adopted later by GNOME. The interested reader can refer
to [3] for a detailed description of the GNOME project as
an example of global software development.

In the rest of this section we define how we have selected
the target population and the sample of developers to be
studied with more detail, and describe the data sources used
for the research.

4.1 Selection of the target population and the
sample of developers to be studied with
more detail

Once we had chosen GNOME as case study, we queried
the full list of users in the CVS, and selected this set as target
population. From this population we extracted a sample to
be studied with more detail. The developers in this sample
fulfilled some criteria:

• The first is commit is not later than April 2001, in
order to have enough data to study.

• The last commit was in year 2004, in order to select
only currently active developers.

• The main contribution of the developer is code. We are
interested in people who must comprehend a software
artifact in order to make contributions to the project.

• For the same reason, the developer must not be the
creator of the modules where she is writing, and must
have started to write code in the module at least one
year after its creation. Otherwise, the developer may
not have had the need to comprehend a software arti-
fact, but to build it from scratch.

• The developer must be very active in the last years.
We decided to discard developers with less than 1000
commits for this reason.

4.2 Mailing lists
The data gathered from the mailing list archives has been

parsed and dumped into a database. For each message we
have recorded sender (name and e-mail address), subject,
date and message id number. We have performed our anal-
ysis on the 109 mailing lists included in the GNOME and
in the GIMP archive4 and computed 464,953 entries in our
database (one entry per message), written by 36,299 differ-
ent posters (that is, with different e-mail addresses). The
first message recorded was sent on May 30th 19965 and the
last on November 16th 2004.

Once we had fed the database, we queried for the selected
developers by name and by username in order to find the
e-mail addresses they used (some of them had ten or more).
To join information from mailing lists with the one given

4The archives can be found at http://mail.gnome.org/
archives/ for GNOME and at http://gimp.org/mail_
lists.html for the GIMP
5GNOME began on August 1997, but the first message was
stored in the mailing lists of the GIMP, which began earlier
than GNOME.

by the bug tracking system and CVS, we used some auto-
matic identification methods for integrating data from var-
ious sources [9] as well as some non-automatic verification
methods.

4.3 Bug Tracking system
For the analysis of the GNOME bug tracking system we

retrieved all the bugs which are publicly available through
the Bugzilla web interface6 and obtained 123,739 bug re-
ports submitted by 41,835 reporters with 382,271 comments
authored by 10,580 contributors. Anonymous posts are not
allowed in Bugzilla. The first bug dates from February 1999,
while the last considered for this study was reported Novem-
ber 2004.

Due to the assignation of e-mail addresses accomplished
for the analysis of the mailing list archives, the identifica-
tion of developers in the bug tracking system was straight-
forward in most cases, both for the whole population and
the extracted sample. In any case, this is a task which is
not that difficult, since developers usually have a Bugzilla
account that is uniquely bound to an e-mail address. It is
used by the bug tracking system to notify the developers
about new bugs or status changes on already existing bugs.
So if a developer changes her e-mail address, all the entries
performed by her will appear to have been done with the
new e-mail address.

4.4 Version control system
For the analysis of CVS we used the CVSAnalY tool [10],

which makes a detailed analysis of the logs of CVS repos-
itories. In the case of GNOME we have identified 1,067
developers with write access to the CVS repository working
on the 767 existing modules. The CVS repository opened in
November 1997 and the date for the last commit considered
in this study is from April 2004. During this time 2,006,162
commits on 184,729 files have taken place7.

5. ANALYSIS AND RESULTS
Applying the aforementioned methodology we got first a

population of 1067 developers. We could only obtain the
dates for messages in the mailing for 754 developers, as the
automatic identification of e-mail addresses was not success-
ful for all the CVS user names. For the same reason, we
could only obtain the date of the first bug report for a set
of 609 developers.

With this set of 754 developers we obtained the differences
between the dates of the first commit and the first message.
In the table 1, a summary of the statistics of the time dif-
ferences between the first commit and the first message is
shown.

The same process was repeated for the time differences
between the first bug report and the first commit, with the
set of 609 developers. A summary of the statistics for these
time differences is shown on table 2.

As the kurtosis values in tables 1 and 2 show, the proba-
bility distribution for each variable is different. In the case
of the differences between bug reports and commits, it is a

6See http://bugzilla.gnome.org
7The results of the whole CVS analysis done with CVS-
AnalY for GNOME and for other large libre software
projects can be found at http://libresoft.urjc.es/
index.php?menu=Results

Mean 12.91
Standard Deviation 28.39

Variance 806.24
Kurtosis 37.29

Minimum −73.37
Maximum 360.97

Count 754

Table 1: Summary of statistics for the time differ-
ences between the first commit and the first message
(time in months)

Mean −4.49
Standard Deviation 22.47

Sample Variance 504.77
Kurtosis 0.044

Minimum −72.80
Maximum 65.07

Count 609

Table 2: Summary of statistics for the time differ-
ences between the first commit and the first bug
report (time in months)

normal distribution; but not in the case of the differences be-
tween messages and commits. If we obtain the histogram for
each variable, and plot them in the same figure, we obtain
the figure 2. In that figure, it seems that the distribution
of time differences between commits and messages is the re-
sult of the addition of, at least, two probability distributions
(one with approximately zero mean, and other with approx-
imately mean at 48 months). As the kurtosis value for this
variable is different than zero, at least one of the distribu-
tions must be non-normal. We can also deduce that, taking
into account that there at least two different distributions,
there must be at least two groups of developers with differ-
ent features. As we will show with the selected sample, we
think that the main difference is that the two groups present
different joining patterns into the project.

0

20

40

60

80

100

120

140

-80 -60 -40 -20 0 20 40 60 80 100

Mail to commit
Report to commit

Figure 2: Distribution of time elapsed between
events (horizontal axis) and number of developers
(vertical axis). Time measured in months. It seems
that the e-mail to commit distribution is the addi-
tion of at least two different probability distribu-
tions.

Regarding to the onion model, it seems that most of the
developers have committed a change in the CVS before they
ever sent a bug report (52.5% of developers with negative
time difference), and so do not comply with the onion model

in this aspect. In the case of the time difference between
e-mails and commits, most of developers (75.6%) seem to
comply with the onion model in this aspect, because their
first contact with the project is an e-mail message to the
mailing lists.

In general, the full population of developers does not com-
ply with the onion model, as looking at the means of the two
distributions, it shows that bug reports appear earlier than
messages in the mailing lists (and it is supposed that sending
a message requires less knowledge of the project). More-
over, the mean time elapsed between all the events (first
bug report, first e-mail message and first commit) is short,
although the standard deviation is of the same order than
the mean and there are evidences of the existence of several
groups of developers.

So, as it looks like there are two groups of developers, and
the full population does not seem to comply with the onion
model, a more profound analysis is needed. For this purpose
we extracted the above mentioned sample, and repeated the
same procedure (although we also included comments to bug
reports, and supposed that if a developer writes a comment
in a report, is due to a bug fix). This time, instead of identi-
fying the e-mail addresses by automatic methods, we looked
carefully for the e-mail addresses and Bugzilla user for each
developer in the sample. We selected a first sample of de-
velopers who seemed to meet the selection criteria. How-
ever, we screened it carefully to discard some developers
who in fact failed to comply with all the criteria. The anal-
ysis started by identifying common patterns, grouping the
developers according to how similar their joining processes
were. We also studied which of those patterns fitted the
assumptions of the onion model, and tried to identify com-
mon characteristics and parameters of the different groups
of developers found in the previous step.

From the 1,067 developers with write access to the GNOME
CVS repository, after automatically confronting their pat-
terns of activity in CVS, mailing lists and bug report system
with the selection criteria, we got a set of 32 which could
meet those criteria.

By further analyzing this set, identifying and screening
developers one by one, we found that 12 of them did not
really meet the selection criteria for several reasons. For in-
stance, we found developers that had been active in the CVS
earlier than the data suggested, because at that time they
were using a different username; others that contributed to
a module which had almost no activity during the first year;
and even one which had not participated in Bugzilla, the
bug tracking system of the project. This screening, there-
fore, lead us to a sample of 20 developers (see table 3).

Developer Nature Number
Volunteers 8
Employees 8

University staff 4

Table 3: Nature of the developers in the sample

We found that we can classify the activity patterns of the
20 developers in two groups. The first one, composed of 7
developers, includes all who clearly followed the predicted
sequence according to the onion model (this group will be
referred from now on as “Group 1”). Table 4 gives the dates

of the first contribution for each developer, and their global
contribution to the mailing lists, version control system and
bug tracking system. The main contribution of these de-
velopers is code (the mean percentage of code commits is
78.37% with a standard deviation of 16.83%).We can say
that developers in this group follow a slow, gradual joining
process. The first activity we track for any of them is an
e-mail message. Later, they report a bug, at some point af-
ter that, they fix a bug. Finally they get access to the CVS
repository and commit a change there. This process lasts
usually between two and three years.

The second group, composed of 12 developers, has a pat-
tern that does not fit the predicted sequence. On the con-
trary, they showed an almost simultaneous start-up in mail-
ing lists, bug tracking system and CVS repository (which
will be referred from now on as “Group 2”).

Table 5 shows the date of first contributions in the var-
ious sources considered in this study as well as their total
number. These developers are mainly coders (the mean per-
centage of code commits is 78.12% with a standard deviation
of 13.91%). At the same time, developers in this group fol-
low a rather fast process with sudden activity at all levels,
usually completing the whole process in less than one year,
and with no special ordering of first track of activity in mail-
ing lists, bug tracking systems and CVS. Four of them begin
their participation in all systems almost at the same time.

There is still a single developer (again, her main contribu-
tion is code, with a percentage of code commits of 67.21%)
who shows a completely different joining pattern as it can
be seen from table 6, which cannot be considered in any of
the previous group. This seems to be a sort of “rara avis”:
it took her almost three years from its first message to a
mailing list to the first commit to CVS. Two years later she
began to use the Bugzilla system. We do not consider this
developer in the subsequent analysis as we consider him as
an exception.

To identify the two groups, we computed some progress
metrics for each developer. Considering the date of their
first message in a mailing list as the beginning of the process,
we calculated the time elapsed until the first participations
(report and fix) recorded in the bug tracking system, and
until the first commit in the CVS repository. The aggregated
results of these metrics for each group are shown in table 7.

With these results we can already answer the first question
we proposed. For the given sample, Group 1 complies with
the predictions of the onion model for the process of joining
the project, while for Group 2 the pattern is clearly not
compliant. Regarding to the mean time that the joining
process takes, for the group 1, as table 7 indicates, the mean
time is about 30 months (the time ellapse both from the
first e-mail and first bug report to first commit). So, for a
volunteer developer (at least, for the volunteer developers
in the sample), it takes up to 30 months to gain enough
knowledge to be able to write code in the project. The
diagrams for the joining pattern of some of the developers
of this group are shown in the figure 3.

For the group 2, the time needed to become integrated
is much shorter: the developers perform their first commit
much earlier. This indicates a faster integration process,
which could be explained by developers being either hired
by companies or being university staff. Supposedly, that
would mean that they are experienced developers, and there-
fore already knowledgeable in the uses and processes of the

Developer 1st message 1st report 1st fix 1st commit # commits # messages # bugs # comments
1 01/09/99 03/11/01 03/11/01 12/01/01 1603 360 158 975
2 12/23/98 02/03/01 08/16/01 08/23/01 1982 141 59 993
3 09/08/99 07/18/01 05/21/01 06/19/00 973 138 32 407
4 12/03/99 04/12/01 03/13/01 05/01/01 8044 965 154 3508
5 01/01/97 02/18/01 02/18/01 02/06/01 6949 1499 18 123
6 06/05/98 04/24/99 10/29/99 04/29/99 9485 1214 558 2080
7 11/13/96 03/20/01 03/21/01 02/15/01 3720 163 26 367

Table 4: Some statistics about the selected developers (Group 1)

Developer 1st message 1st report 1st fix 1st commit # commits # messages # bugs # comments
8 01/07/01 09/13/01 06/06/01 04/06/01 2884 5529 459 17
9 07/14/00 02/11/01 02/22/02 05/17/01 5877 103 15 129
10 11/08/00 04/12/01 12/11/01 04/11/01 6830 618 235 1490
11 06/06/01 01/29/01 05/25/01 01/26/01 5384 1551 62 1963
12 01/26/00 02/22/01 05/23/00 03/04/00 6789 5189 35 3062
13 10/06/99 05/26/00 04/03/00 02/16/00 6421 115 85 75
14 06/09/99 06/15/00 01/27/01 06/30/99 29862 2464 48 4149
15 02/05/01 03/27/01 02/07/01 02/05/01 11250 6561 180 1670
16 09/30/99 07/30/01 12/03/00 03/11/99 37705 165 26 1331
17 06/15/98 12/13/01 04/14/00 01/16/99 9384 838 45 1088
18 08/31/99 05/23/00 11/12/00 10/21/98 6379 709 2 16
19 12/12/98 02/01/01 11/07/00 02/17/98 32489 2799 117 6951

Table 5: Some statistics about the selected developers (Group 2)

Name Volunteers Employees Univ Tot
Group 1 7 0 0 7
Group 2 0 8 4 12

Rest 1 0 0 1

Table 8: Groups by nature of the developers

community, and capable of learning quickly. Maybe it also
implies more confidence by their partner developers (since
in GNOME, as in many other libre software projects, access
to the CVS is granted once the developers perceive that the
candidate has enough knowledge about the project). There-
fore, the joining pattern in this group is much different than
in group 1 (not following the onion model), as shown in
figure 4.

The main difference in each group is the nature of devel-
opers (table 8). In the sample, there were 8 volunteers, 7 of
them being part of group 1. All the hired developers and
university staff are part of group 2. Thus, there is a clear
conclusion that, for those developers in the GNOME project
that achieve to become part of the group of core developers,
with the restrictions already mentioned, only volunteers fit
the progress predicted by the onion model.

6. CONCLUSIONS AND FURTHER WORK
We have studied the patterns found in the joining process

of the whole population of GNOME developers. For them,
we have shown that there is not a clear “common” joining
pattern, and that its behavior does not seem tocomply with
the predictions of the onion model. Moreover, as the proba-
bility distributions show, it seems that there are more than
one group of developers with specific characteristics with
respect to their comprehension process.

Figure 3: Activity diagram for some developers in
Group 1. For each, four bars are shown, each rep-
resenting a period of activity (CVS, top; Bugzilla,
those in the middle; mailing lists, bottom)

To obtain more detail about these groups, we selected a
specific sample of core developers of the GNOME project:
those who are highly active, mainly devoted to coding, and
not starters of the modules to which they contribute. All of
them had to comprehend a mature software artifact before
they were able of contributing.

When we focused in this sample of core developers, we
found significant differences between two different joining
patterns: that of volunteers, which follow the onion model,
and that of hired developers, which do not. Furthermore,
hired developers get integrated into the project and gain
enough knowledge to write code in it much faster than vol-
unteers (whose integration process takes up to 30 months).

Developer 1st message 1st report 1st fix 1st commit # commits # messages # bugs # comments
20 11/13/96 07/18/01 02/24/01 09/02/99 5753 8673 6 19

Table 6: Some statistics about the selected developers (rest)

Samples t to commit sd. dev. t to bug report sd. dev. t to bug fix sd. dev.
Whole sample 13.49 19.86 21.92 18.29 22.42 16.48

Group 1 29.58 17.58 29.35 16.18 35.01 13.69
Group 2 0.19 6.75 12.57 12.52 13.11 8.727

Table 7: Progress metrics for each group (in months)

Figure 4: Activity diagram for some developers in
Group 2

Therefore, in short, we can say that the onion model is
followed only by the volunteer developers in our sample, but
not by those working for the project as employees. However,
for all the developers following the model, the observed join-
ing pattern is quite similar.

Although the sample selected for the study could seem
tiny at first sight, it is important to notice that it has been
designed to cover one of the most interesting cases of de-
velopers joining a project. However, our selection criteria
leaves outside very interesting cases, such as the developers
of Ximian (now Novell), probably the company with most
influence in the development of GNOME, because many of
them belong to the group that was active in the first stages
of the project. It would be of course worthwhile to design
another sample including at least some of them. Those de-
velopers, in our opinion, are the best candidates to be hired
for companies interested in the project, as they have been
contributing since its beginning.

It is for sure also interesting to extend this study to other
large, long-term libre software projects, such as KDE, Apache,
etc, to find out whether the conclusions shown here are par-
ticular for the GNOME project or general for the libre soft-
ware phenomenon.

Finally we think that companies can learn an important
lesson from these results. When one is interested in con-
tributing to a libre software project which is strategic for
them, hired developers can gain enough knowledge of the
project as to begin to contribute in a short time, even if
they did not have a previous contact with it.

7. ACKNOWLEDGMENTS
We thank Carlos Perelló, who is part of the GNOME com-

munity, for his assistance and suggestions.

8. REFERENCES
[1] K. Crowston and J. Howison. The social structure of open

source software development teams. In Proceedings of the
International Conference on Information Systems, Seattle,
WA, USA, 2003.

[2] T. Dinh-Trong and J. M. Bieman. Open source software
development: A case study of FreeBSD. In Proceedings of the
10th International Software Metrics Symposium, Chicago, IL,
USA, 2004.

[3] D. German. The GNOME project: a case study of open source,
global software development. Journal of Software Process:
Improvement and Practice, 8(4):201–215, 2004.

[4] M. W. Godfrey and Q. Tu. Evolution in Open Source software:
A case study. In Proceedings of the International Conference
on Software Maintenance, pages 131–142, San Jose,
California, 2000.

[5] J. M. Gonzalez-Barahona and G. Robles. Unmounting the
”code gods” assumption. Technical report, Universidad Rey
Juan Carlos, 2003.
http://libresoft.urjc.es/html/downloads/
xp2003-barahona-robles.pdf.

[6] C. Jensen and W. Scacchi. Modeling recruitment and role
migration processes in OSSD projects. In Proceedings of 6th
International Workshop on Software Process Simulation and
Modeling, St. Louis, May 2005.

[7] S. Koch and G. Schneider. Effort, cooperation and
coordination in an open source software project: Gnome.
Information Systems Journal, 12(1):27–42, 2002.

[8] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[9] G. Robles and J. M. Gonzalez-Barahona. Developer
identification methods for integrated data from various sources.
In Proceedings of the International Workshop on Mining
Software Repositories, St. Louis, Missouri, USA, May 2005.

[10] G. Robles, S. Koch, and J. M. Gonzalez-Barahona. Remote
analysis and measurement of libre software systems by means
of the CVSAnalY tool. In Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS), Edinburg, Scotland, UK, 2004.

[11] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software innovation:
A case study. MIT Sloan Working Paper No. 4413-03, 2003.

[12] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The
co-evolution of systems and communities in free and open
source software development. In S. Koch, editor, Free/Open
Source Software Development, pages 59–82. Idea Group
Publishing, Hershey, PA, USA, 2004.

