
Software Configuration Management over a Global
Software Development Environment: Lessons Learned

from a Case Study
Leonardo Pilatti

Pontifícia Universidade Católica
do Rio Grande do Sul
+ 55 (51) 3320-3558

lpilatti@inf.pucrs.br

Jorge Luis Nicolas Audy
Pontifícia Universidade Católica

do Rio Grande do Sul
+ 55 (51) 3320-3558

audy@pucrs.br

Rafael Prikladnicki
Pontifícia Universidade Católica

do Rio Grande do Sul
+ 55 (51) 3320-3558

rafael@inf.pucrs.br

ABSTRACT
Software configuration management is an important support
activity in the software development process. In global
environments, the software configuration becomes critical due to
the characteristics of the distributed development (physical
distance, cultural differences, trust, communication and other
factors). The objective of this paper is to analyze the software
configuration management in a global software development
environment, identifying the main challenges. The results are
based on a case study carried on at a multinational organization
that has offshore software development centers in Brazil, India
and Russia, and was recently recognized in the CMM Model level
2 in the Brazilian unit. The results suggest the necessity to adapt
and implement some activities in the software configuration
management process addressing the main existing challenges.
These activities were identified as lessons learned, collected at the
end of each project. The problems and the solutions adopted are
presented, aiming to relate these solutions to the organization
distribution level, considering the project team, users and
customers.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software
configuration management, software process models.

General Terms
Management.

Keywords
Global Software Development, Software Process Improvement,
Software Configuration Management

1. INTRODUCTION
The crescent globalization in business environments has affected
the software development market [1]. Aiming competitive
advantages as low costs, high productivity and quality in systems
development, several organizations decided to distribute their
development process inside or outside their countries. India,
Brazil and Ireland, as well as several other regions offer fiscal
incentives and availability of resources in software development.
However, there are several challenges in distributing the teams in
a software development environment. Cultural differences, time
zone and communication medias, per instance, shall be analyzed
to avoid negative impacts in the organization.

In this context, software configuration management (SCM) is also
influenced by the team distribution. The SCM process, even in co-
located environments, is pointed as critical to software
development [2]. When dealing with team dispersion, difficulties
tend to increase. Some authors ([2], [3]) define that it is necessary
to have a new SCM process when working with global software
development. However, others ([5], [6]) argue that the
synchronization between projects can handle the SCM and make
it transparent during development.

To move towards in this question, the objective of this paper is to
understand what kind of problems the project teams has faced
when working with SCM process in a global software
development (GSD) environment, and how these problems have
been addressed. To reach this objective, a case study was
conducted in a multinational organization with software
development centers in Brazil, India and Russia, identifying the
difficulties in the SCM process. The results are analyzed and the
existing challenges are identified. The results are also showed
through lessons learned, that were identified in each project.

Our contribution is the identification of some of the problems and
the addressing of the solutions, getting the lessons learned and
sharing them inside the organization. This paper has the following
structure: section 2 presents the literature review; section 3
describes the research method; section 4 describes the case study
developed; section 5 discuss the results found in the case study;
section 6 presents the conclusions, future studies and the research
limitations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

2. LITERATURE REVIEW
2.1 Global Software Development
Over the last years, software became a vital component in
business. Organizations are depending on software as their
competitive differential. At the same time, economy has converted
national markets in global markets, creating new forms of
competition and collaboration [1]. This is part of the globalization
efforts currently pervading society, where software project teams
have also become geographically distributed in a worldwide scale.
This characterizes the Global Software Development (GSD).
Several reasons lead to it, which goes beyond demand and cost
reduction. Reasons like scale, time-to-market, get capacitated
professionals around the world and cultural reasons have moved
organizations to GSD ([5], [6]).

Tools and technological solutions have been developed over the
last few years to help in the control and coordination of the global
development teams working in this kind of environments. Many
of these tools are focused in supporting procedures of formal
communication such as automated document elaboration,
processes and other non-interactive communication channels.

Moreover, Herbsleb et. al [1], and Carmel [5] point out that GSD
is one of the biggest business-oriented challenges that the current
environment presents under the software development process
point of view, including requirements management, software
design and the SCM, among others.

Organizations search for competitive ad vantages in terms of cost,
quality and flexibility in the area of software development [1],
looking for productivity increases as well as risk dilution. Many
times the search for these competitive advantages forces
organizations to search for external solutions in other countries
(offshore developing), generally, these countries provide financial
incentives to the companies.

2.2 Software Configuration Management
According to the IEEE Standards [3] and to Berczuk et. al. [2],
the purpose of the SCM is to establish and maintain the integrity
of the software products throughout the project’s software life
cycle. Software Configuration Management involves identifying
the configuration of the software (i.e., selected software work
products and their descriptions) at given points in time,
systematically controlling changes to the configuration, and
maintaining the integrity and traceability of the configuration
throughout the software development life cycle.

The work products placed under software configuration
management include the software products that are delivered to
the customer (e.g., the software requirements document and the
code) and the items that are identified with or required to create
these software products (e.g., the compiler). Fujieda et. al. [4] has
complementary definition, where the SCM is a set of procedures
for tracking and documenting software throughout its lifecycle, to
ensure that all changes are recorded and the current state of the
software is known and reproducible. This involves creation, and
managing the changes in a project plan document.

2.2.1 Software Configuration Management Process
The SCM process defines the sequence of activities that need to
be performed in support of the Configuration Management (CM)
mechanisms [4]. As with the project management process, the first

stage in the SCM process is the planning – identifying those items
that need to be under SCM (known as Configuration Items),
locations to store them, procedures for change control, etc. Then
the process has to be executed. Any SCM process, regardless of
whether it uses a tool, requires self-discipline from the project
personnel in terms of maintaining versions, storing items in
proper locations, and making changes properly. Monitoring the
status of the configuration items is therefore important.

3. RESEARCH METHOD
This research is characterized as a study mostly exploratory, since
it is based in a theoretical revision and a case study. It is possible
to justify the use of qualitative methods since it involves the study
of the system development process in its real context, with
description and the understanding of the state of art in those
situations where practice precedes theory [7].

The case study was conducted in a multinational organization that
develops in a global context. The organization is recognized as
CMM level 2 since 2002. The objective of the case study was to
analyze four distributed projects and to identify problems with the
SCM in a global distributed context. At the end of each project,
meetings were conducted to also collect lessons learned. This
research was organized in four stages (Figure 1).

Figure 1. Research Stages

In the stage 1, the objective was to choose some critical projects
inside the organization (either maintenance or new projects -
developed from the scratch). In the stage 2 data was collected
from the analyzed projects in terms of SCM. In the stage 3 the
results were analyzed. In the stage 4 the objective was to collect
and compose the lessons learned from the analyzed projects, to
compose a practical guideline to be used by the project team
members for the next projects.

3.1 Characterization of the Organization
The case study was developed in the organization software
development center located in Porto Alegre, Brazil. This center
performs worldwide software development for a multinational
organization. Almost all projects are geographically distributed
globally since customers and users are located in offices around
the world. All customers are internal to the organization. The
software development process is based on the MSF (Microsoft
Solutions Framework), and on known methodologies such as
RUP (Rational Unified Process), and PMI (Project Management
Institute). The center studied is recognized as a level 2
organization in the SW-CMM model.

3.2 Characteristics of the Analyzed Projects
The analyzed projects involved more than 40 developers located
in 3 different countries – United States, Brazil and India. One
project was considered as maintenance project, increasing the
functionalities in an existing system. The three other projects were
entire new ones in the organization. These projects were analyzed
following a timeline of one and a half year. They happened in
sequence and the lessons learned found in each one could be
applied to the next projects. Because of classified information
involved in the projects and to keep confidentiality of the
project’s purpose, the name of them will not be used as it was.
Letters from A to D will be used to reference them.

3.2.1 Project A
Project A was developed in the Java 2 Model View Controller
(MVC) architecture, following the structure presented in Geary
(2001) [8]. On this architecture, the controller, implemented
through a router class, map user inputs (captured in the view) to
action classes responsible for the business rules. This mapping is
implemented through a resource bundle, a text file containing the
action name and its corresponding action class that should be
called.

This project was the first to be developed simultaneously in
different centers, one in the US, and the other in Brazil. Before
that, every project was developed in only one center. The choice
of this approach was taken due to the application size and the
aggressive delivery date. Working together was the only solution
found at that time in order to accomplish the delivery date.

The work breakdown between the two teams was primarily based
on the data model knowledge. All data access, implemented
through stored procedures, was defined to be done by the US
team. Besides that, the US team worked in some of the use cases
defined (around 30% of the use cases). The Brazilian team was
responsible for the implementation of the other use cases. There
were 5 developers in Brazil and 7 developers in US.

Although it was defined that the teams were going to develop
code together, each one decided to keep its own SCM
environment. Reasons for that were clear: the Brazilian
organization had just achieved its CMM level 2. One of the key
areas on CMM level 2 is the Software Configuration Management
(SCM), which demands a set of well defined and managed
processes. This management must be performed with a high level
of discipline. SCM activities were periodically audited by the
Software Quality Assurance (SQA) team. As the Brazilian SCM
processes were brand new, they were also heavy.

On the other hand, the US team, at that time, was not working
using a defined process, neither using CMM as a reference. There
was a single focal point person to consolidate the changes and
synchronize both environments, this person was not aware of the
delivery dates and he was allocated in order to perform these
SCM tasks only. The result for these differences was that two
SCM environments were created: one simple version control for
the US team, and other that went further, with life-cycles,
baselines, documents and other required capabilities for a CMM
level 2 organizations.

3.2.2 Project B
Project B was developed using a proprietary programming
language called SEEKER. There is a Human Resources

framework developed using this language – much more similar to
a SAP system that uses ABAP4 as programming language.

This project was developed simultaneously in three different
centers, one in the US, one in Brazil and another one in India. The
management team wanted to give some flexibility to the staff team
and try to perform a 24 hours development. There were 12
developers in Brazil, 2 developers in the US and 3 in India.

Even with the distributed developers, this project had only 1 main
repository and SCM environment, concentrating all the sources,
baselines and documents. As the project A, the Brazilian
organization already had process for SCM defined according to
the CMM model, but neither the US nor the Indian team had the
maturity to work in a distributed environment.

In this scenario, all the developers should concentrate their efforts
in synchronize their work with one Configuration Management
Coordinator (CMC). This is a role that a person took to perform
the validation and the integration of the code during the
development. It also should provide support for the team during
the installation of the product. In this project this role was getting
more space in the projects.

A different characteristic is that the CMC was entire involved and
synchronized with project needs. He was aware of the target dates
and the project purpose and scope.

3.2.3 Project C
Project C used PL/SQL language and the purpose was to create
new interfaces to communicate with a human resource system.
There were 2 developers in Brazil and 2 developers in the US.
The scope of the project were divided in modules and separated
between the two sites. Due to an agreement between the teams,
they agreed on the use of CMM level 2 compliant processes. But
the Brazilian team had more experience which this kind of
projects.

This project used a single SCM repository, but involving 2
experienced Configuration Management Controllers to be as focal
point. Every kind of work that should be performed should pass
by these two persons to validate the artifacts to be uploaded to the
SCM tool.

3.2.4 Project D
Project D was developed in the same architecture presented in the
project A with similar development team’s characteristics: a
development team in Brazil and another in US. The Brazilian
team was composed by 5 developers, while the US team was
composed by 3 developers. The scope of the project were divided
in modules and separated between two sites. Just like in project C,
the teams were using CMM level 2 compliant processes, but
Brazilian organization was working with the processes during
more time while US team was preparing their assessment during
this project.

Two configuration managers conducted project’s SCM
coordination, one at each site, supporting the project team
members. Experienced SCM coordinators oriented both
Configuration Controllers. The SCM environment on this project
was shared between the teams.

This project used unique SCM documentation. In one hand that
caused a large effort on the planning for defining configuration
items and approves the SCM documents. In another hand it

reduced the Configuration Controller effort during development
phase acting on Quality Audit’s non-compliances and on rework
related to re-planning SCM activities and baselines.

4. CASE STUDY RESULTS
In order to organize the analysis, Table 1 shows some critical
points identified in the projects. For the country identification, we
have used Brazil as “BR”, the Unites States as “US”, and India as
“IN”. It is important to notice that the projects were developed in
sequence, one after the other.

Table 1. Critical data collected from the analyzed projects

Characteristics of projects

Project Countries
involved

of SCM
focal points

of
developers

Use of
distributed

environment
A BR, US 1 12 NO
B BR, IN, US 1 17 YES
C BR, US 2 4 YES
D BR, US 2 8 YES

We can see that the number of SCM focal points increased from
project A to project D. The tendency in using distributed
enviroments could also be noted only in project A, showing that
this approach was not to effective in the first distributed project.
The most complex project, in terms of SCM, was project B
because the high number of developers from different cultures,
using different processes. In each project, an extensive analysis
was conducted to identify the problems and lessons learned. The
commom lessons learned will also be higlighted in each project.

4.1.1 Project A
On the Project A, as discussed in the previous section, the work
breakdown between the American and Brazilian teams was based
on two points: all data access would be performed by the
American team (which had better knowledge on the data model),
and the use cases would be divided between the two teams. This
breakdown caused problems identified in the middle of the
development phase: the American team, responsible for the stored
procedures, got over allocated and delayed the stored procedures
required by the Brazilian team. That impacted the Brazilian team a
lot, who depended on the American team in order to finish their
use cases. The project schedule was affected because of that. For
that reason, the work breakdown in distributed projects should
minimize dependencies between geographically distributed
teams.

The decision to keep distinct SCM environments for each team
brought together several consequences. The first was the need for
synchronization on the SCM environments. In project A, as the
SCM tools were different, this had to be performed manually, a
task that took from the configuration controller 3 to 4 hours each
week.

Some configuration items were updated by the two teams: the
resource bundle file, for example. This obligated the configuration
controller to perform manual file merges on the resource bundles,
a task subject to errors. In that context, distributed development
projects should work with only one instance of SCM
environment.

4.1.2 Project B
Project B used a single instance of SCM environment, and that
showed later to be a crucial decision for the project success.
Processes were previously negotiated between both teams, thus
avoiding synchronization and build problems.

At the end of the development phase, and because of the project
size and the number of people testing the application, it was
decided to perform two builds every day. This number of builds
required one responsible person with great application and
technology knowledge. Builds were scheduled in predefined
times. Although builds were frequent, the number of errors caused
because of builds was very low, around 3% of the total number of
errors found in the project. Even with centralized SCM
environments, the team should define one build coordinator
with great experience on the application and technology in
place.

Although SCM process were previously negotiated and agreed
between the American and Brazilian teams, it was noted that some
fundamental concepts in SCM were misunderstood or misused.
The probable reason for that was that the American team was
starting its work towards CMM level 2, while the Brazilian team
had already got this certification level, and was, consequently,
more experienced in the SCM processes.

An example of such situation was the baseline concept. The
baseline should be used as the place from where the build
coordinator extracts the configuration items required for the build.
This concept defines and directs what and how the configuration
items should be created: all items should have high cohesion, and
do not depend on other items that are not under configuration
management. The contents of a baseline should be enough to
reproduce an application environment at any time, now or years in
the future.

In project B it had such situation with database scripts, that
although were under configuration management, they were
supposed to update an object that was not the database itself.
There are ways to avoid this kind of problems in scripts: do not
use updates, remove all records before inserting into a table, etc.
They were actually ways that allowed the creation of the
application environment from scratch, at that time. In other words,
putting all configuration items required for a build under
configuration management is a good approach.

It was also noted that that baselines were not enough to rebuild an
application environment from scratch. It was necessary to use
other resources that were not under configuration management
(database backups, for example). Hence, establish and clarify all
main concepts on SCM discipline, before actually starting
development, can be an approach to avoid lack of understanding.
Reviewing and checking the configuration items is a good
solution also, because it can prevent missing files that aren’t
under SCM.

4.1.3 Project C
Project C was characterized by the weak engagement about the
SCM processes. That caused some misunderstandings between the
American and Brazilian teams. The SCM on this project was
handled by two configuration controllers, one in the American
team, and the other in the Brazilian team, but responsibilities of

each one were not previously defined and communicated to the
project stakeholders.

An example of direct consequence on this was the high number of
non-compliances found: the SQA (Software Quality Assurance)
team of each country didn’t know what the scope to be evaluated
was, and that caused a lot of problems that could be easily
avoided with a better engagement at the beginning of the project.
Even with experienced teams in distributed development, the
SCM engagement at the beginning of the project should be
prioritized.

Another problem faced by the development team on project C was
the lack of baselines planning. The baselines were requested on
demand, and sometimes could not be handled by configuration
controller because of his allocation on other tasks. This caused
delays in some planned deliveries. For that reason, is good to
always plan baselines and document them in the project’s SCM
plan, as soon as possible.

4.1.4 Project D
Project D was the last project developed in timeline from the
projects shown in this work. With that this project didn’t
experienced many of the problems of the projects A, B and C, but
some of them were still noticed on this project.

The most noticed problem experienced in the past was the
dependency between the modules developed by the American and
Brazilian teams. Even with a less impact than the project A,
modules dependency caused some rework and idle time for the
developers.

Mainly that was caused by changes on the scope of each team,
part of the scope of a team passed to the other due to some delay.
With that a module were divided between the teams and the
problem with the dependency appeared once again. The re-
planed activities due to scope floating across teams should take
in place. The analysis should include dependency verification
on the module being floated against the other modules.

5. LESSONS LEARNED
After the analysis of these four projects, it can be conclude that to
manage the configuration in a GSD context can become an
arduous task if the process will not be well defined and if the
teams will not be previously prepared to work in this scenario.

What was perceived here is that all the work involving the CMM
Model level 2 project in the Brazilian unit collaborated in a big
scale to minimize some problems found in this scenario. The
definition of a SCM process based on the CMM model brought
excellent results related to the distributed environments problems.
Also, the teams were able to standardize all the work and to
converge in a common understanding about the best approach to
develop both projects. So, as a conclusion, many of the efforts
spent in the CMM Model level 2 project contributed to minimize
problems in terms of SCM process definition.

Looking at the timeline of the projects presented on this paper,
some considerations can be identified for the evolution of the
SCM activities in distributed projects executed by this
organization. It was noted that some of the lessons learned in prior
projects are in fact being applied in the most recent projects. An
example of this is the unique SCM environment. Project A was
the last distributed project executed in two distinct SCM

environments. The overhead caused by this multiple environment
can make the distributed development impossible, as the project
size increases.

Other lessons learned were forgotten as time goes by. The
dependency on tasks executed by the American and Brazilian
teams, identified on project A, is back on project D, although it
didn’t happened on projects B and C. For some reason, the teams
are recurring to an alternative that will cause more problems in the
near future. Those reasons must be better analyzed.

There are also other lessons learned that in fact were not
assimilated by the project teams. An example of that is the
problem in fundamental concepts in SCM, like the baseline
concept, identified on project B. Although the problem was
raised, it still is not considered as a critical factor in the future
projects. Project teams did not understand yet the importance of
such concept, and the benefits that they could have with its correct
utilization.

It was noted also a tendency on the teams to relax on
engagements, as times goes by. The SCM engagement observed
on project C was very poor, and that caused a lot of SQA issues.
Maybe the experience got in projects A and B brought together a
false sense of power on the teams, which caused this weak
engagement. A list of the problems and lesson learned identified
in the projects described in Table 2.

Table 2. Lessons Learned

No. Lesson Learned Projects
#1 The work breakdown in distributed projects

should minimize dependencies between
geographically distributed teams.

A

#2 Distributed development projects should
work with only one instance of SCM
environment.

A

#3 Put all configuration items required for a
build under configuration management is a
good approach.

B, C

#4 Distributed development projects with
centralized SCM environments should define
one build coordinator.

B, C

#5 Establish and clarify all main concepts on
SCM discipline, before actually starting the
development, is a good approach.

B

#6 Even with experienced teams in distributed
development, the SCM engagement in the
beginning should be prioritized.

C

#7 Always plan baselines and document them in
the project’s SCM plan, as soon as possible.

C, D

#8 The re-planned activities due to scope
floating across teams should take in place.

D

Lesson Learned #1: If possible, each team should work in their
modules without any dependency. No matter how integrated the
distributed teams are communication will always be bureaucratic
and expensive. This is related with the work breakdown, causing
dependency among distributed teams, creating a great impact in
the development.

Lesson Learned #2: Both teams should agree in a common
management process. Distinct SCM environments caused
overhead on CM work and activities.

Lesson Learned #3: All files related to build (source codes and
build files) should be stored in a global configuration
environment. Even training and end-user documents can be stored
in the same environment.

Lesson Learned #4: The configuration manager should have
great experience on the application and technology in place, so,
the build will be more efficient. This was because the high
number of required builds throughout the project development.

Lesson Learned #5: Some concepts are essential for the
understanding of what needs to be under configuration
management, and its contents. It was noted that the fundamental
concepts in SCM weren’t completely understood by project team
members.

Lesson Learned #6: Focus on the set of SCM processes,
responsibilities of each team member and communication. This
can avoid the weak engagement on SCM at the beginning of the
project.

Lesson Learned #7: Avoid requesting baselines on demand;
otherwise the deliveries can be delayed. The lack of planned
baselines is a problem root cause.

Lesson Learned #8: The analysis should include dependency
verification on the module being floated against the other
modules. This can predict the problems with configuration
management activities.

6. CONCLUSIONS
The SCM has a critical role in software development process. The
configuration artifacts are used in all subsequent phases of
software planning and developing. Developing, testing,
deployment and installation are made based on the software
configuration. There are several difficulties when trying to
synchronize the SCM activities between teams. Most of those
difficulties are increased when software development teams are
distributed, in fact, some new difficulties can appear.

Considering the growing adoption of the GSD, there are few
studies about the impact it has in the SCM process and tasks. In
these studies, the technical aspects aren’t considered in detail. It is
clearly necessary processes, patterns and tools to address
difficulties cause by team distribution in terms of SCM.

This paper advances the knowledge in the GSD area when
identifying some important characteristics of the SCM in a global
environment, in parallel with a CMM Model level 2 certification
process organizational analysis, specific in a CMM key process
area. As result, many important issues were identified and many
lessons were learned.

This study enables a better understanding of the GSD area and the
relationship between the project team and users related to the
SCM. Due to the small number of case studies, the results cannot
be generalized. In this phase, we can adopt the analytical

generalization principle, proposed by Yin [7]. Also, it is important
to notice that this study was not considered an analysis of the
reasons than can take an organization to adopt strategies of
distribution, nor the software development process by itself.

The intention is to run this study again to collect more empirical
data, bringing more accuracy to the results. Also, new researches
will explore some alternatives and solutions related to the GSD
process identified, considering all difficulties and critical success
factors like culture, communication, coordination, trust and
cooperation focused in the SCM process. In the same way,
another comparison can be done between the four projects
analyzed, in order to understand the way that each team did his
work, considering the distribution level and the team’s profile.

As the main contributions of this study, we can highlight the
lessons learned and the main advantages in having the lessons
learned applied in each subsequent project. Moreover, continuous
software process improvement based on a quality model can be
very important to succeed in GSD environments.

7. ACKNOWLEDGMENTS
This study was developed by the Research Group on Globally
Distributed Software Development of the PDTI program, financed
by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

8. REFERENCES
[1] Herbsleb, J. D. and Moitra, D. (2001). Guest editors'

introduction: Global software development. IEEE Software,
18(2):16-20.

[2] Berczuk, S. P., and Appleton , B. (2002). Software
Configuration Management Patterns: Effective Teamwork,
Practical Integration, Addison Wesley.

[3] IEEE Standards (1999) – Software Engineering – Volume
Two – Process Standards.

[4] Fujieda , K., and Ochimizu, K. (2003). Investigation of
Repository Reprecation Models in Globally Distributed
Configuration Management. In Proc. of the Workshop on
Global Software Development at ICSE.

[5] Carmel , E. (1999). Global Software Teams – Collaborating
Across Borders and Time-Zones. Prentice Hall, USA.

[6] Herbsleb, J. D., Mockus, A. Finholt, T. A., and Grinter, R. E.
(2001). An Empirical Study of Global Software
Development: Distance and Speed. In Proc. of the 23rd
International Conference on Software Engineering, 81-90.

[7] Yin, R. (2001). Case Study: Planning and Methods. Sage,
USA.

[8] Geary, D. (2001). Advanced Java Server Pages. Prentice
Hall. Sun Microsystems Inc, USA.

