
Global Software Development in the FreeBSD Project

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
Patision 76, GR-104 34 Athens, Greece

dds@aueb.gr

ABSTRACT
Freebsd is a sophisticated operating system developed and
maintained as open-source software by a team of more than
350 individuals located throughout the world. This study
uses developer location data, the configuration management
repository, and records from the issue database to examine
the extent of global development and its effect on produc-
tivity, quality, and developer cooperation. The key findings
are that global development allows round-the-clock work,
but there are some marked differences between the type of
work performed at different regions. The effects of multiple
dispersed developers on the quality of code and productiv-
ity are negligible. Mentoring appears to be sometimes as-
sociated with developers living closer together, but ad-hoc
cooperation seems to work fine across continents.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Program-
ming teams; K.6.4 [Management of Computing and In-
formation Systems]: System Management—Centraliza-
tion/decentralization

General Terms
Management,Measurement

Keywords
Global development, Open source, Quantitative analysis

1. INTRODUCTION
Freebsd [20] is a sophisticated operating system available

for a number of modern architectures. It is a complete oper-
ating system (rather than just a kernel, like Linux) derived
from bsd Unix, the version of Unix developed at the Univer-
sity of California, Berkeley. Freebsd, known for its stability
and reliability, runs the servers of large portals like Yahoo
and hosting providers like the Host Department; parts of it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

also form the basis for Apple’s Mac os x. Given the global
nature of the Freebsd development model, the objective of
this work is to examine its extent, determine its effects on
quality and productivity, and explore how geographic dis-
tance affects cooperation among the project’s members.

1.1 Related Work
Global software development has been the subject of two

monographs, a special issue of ieee Software, and a number
of icse workshops; see [15, 4, 12, 5, 17, 9] and the references
therein.

In 1999 Herbsleb and Grinter identified the challenges
faced by splitting the development among various sites by
observing that the structure of code often mirrors the struc-
ture of the organization that developed it [10]. They also
proposed the adoption and use of direct communication chan-
nels between developers as a way to overcome the problems
they described. The importance of these channels in soft-
ware development had already been established in 1995 by
Kraut and Streeter [16]. In the introduction of the 2001
ieee Software theme issue, Herbsleb and Moitra outlined
the problems of global software development by identifying
several dimensions of it: strategic, cultural, and technical
issues; knowledge, project, and process management; and
inadequate communication. Many of those challenges were
first identified in the context of mis software development in
a 1997 conference paper by Erran Carmel [3].

A number of researchers have used data from free and
open source software [6, 24] and commercial projects [1,
13] to examine issues of global software development. Most
of those studies adopt an empirical qualitative approach.
Closer to the approach I adopt in this paper is the 2003 work
by Herbsleb and Mockus [11], who used data from a change
management system in conjunction with a survey to arrive
at the finding that assignments to distributed teams take
a lot longer to complete than corresponding assignments to
collocated developers.

The work reported here leverages on the Freebsd develop-
ment model to provide additional quantitative data points
for the study of global software development. Specifically,
I investigate practices across a large number of widely dis-
persed developers and I integrate data from the configura-
tion management system, the actual source code, the geo-
graphic coordinates of the developers, and the issue report-
ing system.

1.2 The FreeBSD Development Model
Freebsd is developed and maintained as open-source soft-

ware by a team of more than 350 individuals located through-

out the world. Work can be roughly divided into code writ-
ten for the system kernel, the operating system utilities,
the porting of third-party programs, and the documenta-
tion. The global development effort is coordinated through
a number of facilities [7, 23].

• A configuration management system repository, based on
cvs, houses the current version of all the project’s source and
documentation files, maintenance branches of older versions,
and more than 10 years of historical data. The complete
repository is available for public download and for browsing
through a web-based interface.

• A problem reports database, based on the gnats system,
contains descriptions of open and closed issues, the individ-
uals dealing with them, and details of the resolution history.

• More than 100 open and closed mailing lists provide a
broadcast mechanism for developers and end-users. The lists
cover various development areas (such as security or testing),
hardware and processor architectures, and releases of the
system.

• A so-called tinderbox system continuously performs com-
plete builds of the current source code, providing an early
indication of any problems committed to the source reposi-
tory.

• A public web site contains the Developer’s Handbook, up-
to-date release engineering information, a browsable version
of the cvs repository, mailing list archives, and a (read-only)
interface to the problem reports database.

• A network of machines accessible to all Freebsd commit-
ters over the internet provides developers with a common
workspace for compiling and testing their code on different
machine architectures.

Developers are mostly unpaid volunteers, although com-
panies with vested interests in the system also have devel-
opers contribute as part of their job. An elected core team
is responsible for deciding the project’s overall goals and di-
rection, approving proposals for new developers to join the
project, and resolving differences. Separate teams handle
release engineering, third-party ports, donations, and secu-
rity. Developers have the right to modify any part of the
system (a commit privilege), subject to a few formal and
many informal restrictions. For example, developers are not
allowed to commit changes while a code freeze is in place
without prior approval from the release engineering team.
Also, heavy modifications on code actively maintained by
another developer, or changes directly undoing another de-
veloper’s work are frowned upon.

Developers typically start as enthusiastic contributors of
project code; at some point another developer will take in-
terest in their work and recommend them for granting com-
mit privileges. New developers are initially assigned a men-
tor who oversees their work, and approves the changes they
make to the code.

2. METHODOLOGY
This work explores elements of the Freebsd global devel-

opment model through a quantitative analysis of data ob-
tained from the cvs repository, the problem reports data-
base, and the developers’ geographic coordinates.

I derived the cvs data from a snapshot of the cvs repos-
itory taken on November 9th, 2005, and examined through

180˚

240˚

300˚

0˚

60˚

120˚

180˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

10
1

10
1

10
2

10
3

10
4

10
5

LO
C

Figure 1: Development effort throughout the world

the cvs client front-end in conjunction with a number of
Unix tools, such as awk, sed, sort, and join. The repository
covers about 19 million lines of code and documentation, and
contains 938,00 commit messages from 475 different commit-
ters, made in a period of about 10 years.

I also examined the problem reports database by directly
scanning the gnats system files on the project’s shell lo-
gin server, in December 2005. At that time the repository
contained around 90,000 reports.

Both cvs commit messages and gnats reports are tagged
with the login name of the corresponding developer. By
establishing a relationship between developers and their lo-
cations throughout the globe one should be able to derive a
number of interesting results. To that end I used a file dis-
tributed together with the Freebsd port of the XEarth appli-
cation, which contains the latitude, longitude, login name,
and location name of many Freebsd developers. Through
appeals to the developer community and a wholehearted re-
sponse, I was able to increase the coverage of the commit
lines that could be attributed to a specific global location
from 71% on November 17th, 2005 to 79% on January 9th,
2006. At the time of this writing I had secured location data
for 292 developers. I made no attempt to take into account
developers who moved place during the time covered by the
cvs data.

In a number of cases I calculated distances between devel-
opers. For this purpose I used the spherical law of cosines
formula, which gives the distance d between two points with
latitude δ and longitude λ on a sphere with radius R as,

d = R cos−1 [sin δ1 sin δ2 + cos δ1 cos δ2 cos(λ2 − λ1)]

The formula does not take into account the Earth’s ellip-
soidal shape, but is accurate enough for the purposes of this
work.

3. ASPECTS OF GLOBAL DEVELOPMENT
An important question facing potential adopters of global

development methodologies is whether these can work in
practice. By studying the extent and nature of global devel-
opment in Freebsd—by all accounts a successful project—we
can establish a baseline for the state of the art.

The project’s 292 developers for which I obtained location
data live in 206 different locations throughout the world; the
lines of code contributed by each location are depicted as
vertical bars on the map in Figure 1. As we can see from
the Figure, most developers reside in North America and

Europe, with pockets appearing in Asia, Australia, South
Africa and South America.

3.1 Specialization by Area
One question worth resolving is whether various areas of

the world specialize in specific activities: work on a spe-
cific part of the system, or a specific type of work. Given
that Freebsd is a volunteer effort where developers do what-
ever work they enjoy, one could argue that division of effort
across various regions would reflect organizational, cultural,
or technological factors that managers of global development
projects should take into account when planning the distri-
bution of work.

The main development of Freebsd appears to be happen-
ing in North America (46% of the committed lines), Europe
(39% of the committed lines), and Asia (10% of the commit-
ted lines). Australia, South America, and Africa trail with
2.5%, 1.6%, and 0.8% respectively. The bulk of the develop-
ment occurs in the project’s source code (49% of the com-
mitted lines), with the porting and packaging of third-party
software accounting for another sizable 47%. Documenta-
tion and the project’s web site take the remaining 2.1% and
1.7% respectively. We can observe two interesting facts in
the division of labor across regions.

First of all, the work performed by Asian committers is
by an overwhelming proportion (80%) related to the porting
and packaging of existing applications. On could attribute
this difference to cultural factors, but I don’t believe that
this work has sufficient data to make such claims.

The second interesting aspect I found concerns differences
between maintenance and development work. New develop-
ment in the Freebsd occurs in the current, active develop-
ment branch of the configuration management system. De-
velopers are also encouraged to back-port, where possible,
enhancements and error corrections to the stable branches of
the older maintained versions following a procedure known
as “merge from current” (mfc). Contributions to the sta-
ble branches are more likely to represent maintenance work.
Surprisingly, the distribution between the two work types
across regions is not the same. Whereas in North America
work is roughly equally divided between contributions to the
active and the stable branches (56% versus 44%), the dis-
tribution in Europe and Asia favors the active branch with
about 70% of the lines committed to it.

I can propose two theories for explaining these differences.
One is that there are more Freebsd-based production sys-
tems, such as Yahoo, in North America than in the other
regions where more developers use Freebsd on their per-
sonal workstations. Production systems tend to run stable
versions of the system, and we can therefore expect North
American developers to have an active interest in maintain-
ing them. Another explanation might involve the composi-
tion of the release engineering team. Members of that team
are responsible for coordinating the Freebsd releases, and
one might think that they have a higher interest than other
developers in maintaining the stable versions, either on their
own, or with the help of local developers they know. How-
ever the team’s composition is not so sharply polarized as
to explain this difference. Although five of the six current
team members have us ties, two have also uk ties, and one
lives in Japan.

The picture is also complicated by the different distribu-
tion appearing in the developers who resolve entries in the

 0

 50

 100

 150

 200

 250

 300

 0 4 8 12 16 20

A
ve

ra
ge

 L
O

C
 p

er
 d

ay

Time (UTC)

Figure 2: Round-the-clock development

Freebsd issue database. Here Europe with 41% of the re-
solved issues leads North America, which accounts for 36%
of the resolved issues, while Asia and Australia trail with
12% and 7%, respectively. Apparently, working through en-
tries of the issues database is a task orthogonal to the one
of maintaining the stable versions.

3.2 Round-the-Clock Development
One often-claimed advantage of global software develop-

ment is the ability to develop software round-the-clock in
a continuous 24 hour cycle. In Figure 2 we can see that
this goal is indeed realized in the Freebsd project. For the
past ten years, Freebsd developers committed on average
177 lines on every hour of each day; this number fluctu-
ated between a minimum of 116 lines (at 02:00 utc) and a
maximum of 285 lines (at 03:00 utc).

A question related to round-the-clock development is the
granularity of the work items processed. Is work on a given
file passed from one location to the next, are far-away devel-
opers cooperating on large modules, or are the development
responsibilities divided into different areas? Answering this
question allows us to establish a method of round-the-clock
development that has worked in practice. To tackle this
problem I observed the commit logs at the level of individ-
ual files, complete modules, or the whole system, through
various sliding windows covering 8-hour and daily intervals.
By looking at commit messages in a given window I counted
the number of days in which commits occurred, the number
of days with 8-hour-far commits by the same committers,
the number of days with next-day commits, and the num-
ber of days with 8-hour-far commits by different committers.
These numbers allow us to see both normal work patterns
and patterns likely to be associated with round-the-clock
development.

At the level of files, round-the-clock development does
not appear to be very prevalent. Only in 1% of the days
was a commit followed after 8 hours by a commit from a
different developer; in contrast work periods of the same de-
veloper spanning more than 8 hours occur in 1.7% of the
days changes are committed into a file. Apparently (and
quite reasonably) developers prefer to stretch a long pe-
riod of work than hand out the work to be completed by
somebody else. When we turn our attention to modules the
situation is reversed: 5.1% of a module’s work days contain

commits spanning more than 8 hours by the same developer,
while a whole 12.5% of the work days contain commits by
different developers. Here it looks like developers from dif-
ferent parts of the world cooperate together on the same
module, working across different timezones. Not surpris-
ingly, the same story appears at the system level where in
96% of the days commits by different developers will span
8-hour periods, while in only 50% of the project’s work days
will a developer work for more than 8 hours. Incidentally,
work around a normal 8-hour day period (rather than work
stretches longer than 8 hours) appears to be the prevalent
pattern across all three divisions. Commits by the same de-
veloper on the next day occur in 3.6% of the days for files,
in 18% of the days for modules, and in 97.8% of the days
for the complete system.

4. PRODUCTIVITY AND QUALITY
Before embracing global software development one would

like to know how this type of work will affect the productiv-
ity of programmers and the quality of the deliverables. In
theory, we can see factors that could affect these variables
in positive ways (for example round-the-clock development
[14]), in negative ways (for example lack of face-to-face com-
munication [16, 10]), and in ways that are indeterminate
(think of cultural diversity [19]). I therefore tried to ex-
tract from the data at hand measures that could be used
to examine correlation between metrics of global software
development, and productivity or software quality.

4.1 Productivity Effects
Productivity is typically measured as output per unit of

input. Unfortunately, though not surprisingly, the Freebsd
project does not keep data on hours each volunteer devel-
oper works on the code. As the next best thing I tried
to see whether the geographical distance between develop-
ers working on a module affects the number of lines that
are committed in it. For various modules of the Freebsd
system I measured the average number of lines committed
over a rolling one-month interval, the length of time devel-
opment went on for a given module, the number of commits
performed, the number of different committers, and the av-
erage geographical distance between the committers. From
the 1,300 modules I examined, I removed modules being de-
veloped outside the Freebsd project (contributed by other
groups), and modules with less of 1,000 lines committed
over their entire development history. That left me with
463 modules.

As a base case I examined the correlation between the av-
erage number of lines committed per month and the percent-
age of commits made by different committers. Intuitively
one might expect—Brooks’s law [2] notwithstanding—that
more people working on a given module would contribute
more code. (In the next subsections we will examine the
quality of that code.) Indeed, I found a positive correlation
between those two measures: a Pearson’s product-moment
correlation of 0.67 in a 95% confidence interval between 0.62
and 0.72. This base case establishes that committers can
indeed be used as a proxy for measuring the productivity’s
input.

Next I examined the correlation between the average num-
ber of lines committed per month and the average geograph-
ical distance of the developers committing them. Given that
the base case established a correlation between committers

and the number of lines committed, we would expect that
any relationship between the distance of those committers
and the work produced would show up as a correlation in
this case as well. However, a two-sided Pearson’s product-
moment correlation test on those two measures came up only
with an extremely low correlation of -0.14 in a 95% confi-
dence interval between -0.22 and -0.04. The corresponding
coefficient of determination (r2) explains less than 2% of the
variance between the two measures, and we can therefore
conclude that in our case the geographic distance between
developers does not significantly affect productivity.

4.2 Effects on Code Style
I also examined how a large number of (geographically

dispersed) committers might affect the quality of the pro-
duced code. If the software’s quality deteriorates when soft-
ware is globally developed, managers should appreciate this
problem, and establish procedures for dealing with it. The
quality of code is determined by many elements [25], and
measuring it is far from trivial [27, 22]; For the purpose of
this study I chose to examine adherence to the Freebsd code
style guidelines [8] as a proxy for the overall code quality. I
chose this metric because I could easily measure style adher-
ence by formatting each source code file with the indent pro-
gram configured according to the Freebsd style guide, and
calculate the percentage of lines that indent would change
(the size of a minimal set of differences between the actual
file and the formatted one). Furthermore, by having cvs
generate a listing of the source code file with every line an-
notated with the name of the author who last modified it,
I could count the number of developers who had worked on
the file.

Armed with those two measurements, I used again Pear-
son’s product-moment method to examine correlation be-
tween the two. The correlation coefficient for the 11,040
pairs of measurements was a miserly 0.05 in a 95% confi-
dence interval between 0.03 and 0.07. We therefore see that
in our case, the involvement of geographically dispersed pro-
grammers in the development of code does not affect the
quality of the produced code.

4.3 Effects on Defect Density
Finally, I examined whether the global development of a

file by various developers was associated with an increased
number of problem reports filed for it. Such a correla-
tion could indicate that global development in the Freebsd
project leads to an increased number of bugs in the code,
due, for example, to communication problems between the
various developers. Although problem reports are kept in
a database different from that of the Freebsd configuration
management system, rectified problems are typically marked
in a cvs commit message by a reference to the correspond-
ing problem report (pr). Because serious problem reports
are by definition sooner or later rectified, I could establish
a measure of the density of problem reports in a file by di-
viding the number of commit messages tagged with a pr
number with the total number of the file’s commits. I could
then examine the correlation of that ratio with the num-
ber of different developers that had committed code to the
corresponding file.

I collected data for 33,392 source code files, 457,481 com-
mit messages, and 12,505 prs. On average, each file was
associated with 13.7 commits, 0.37 prs, and 4.2 different

Min. 1/4 Median Mean 3/4 Max.
Any 0 2,215 7,793 6,702 9,380 19,390
M-M 0 745 3,856 5,080 8,801 18,650

Table 1: Developer and Mentor-Mentee Distances

developers. A two sided Pearson’s product-moment corre-
lation test between the pr density and the number of com-
mitters gave an insignificant correlation between the two
values (0.07) in a 95% confidence interval between 0.06 and
0.08. Therefore, the data from the Freebsd project does not
support the hypothesis that global software development is
associated with a higher bug density in the code produced.

5. HUMAN INTERACTIONS
It would be short-sighted to study global software devel-

opment only in terms of the resulting product. Organiza-
tions also serve and fulfill innate human needs and drives of
their members, such as those of acquiring, bonding, learning,
and defending [18]. I therefore used data from the Freebsd
project to examine how the distance between developers af-
fects the network of their relationships. I focused on two
types of associations between developers: cooperation to-
ward a common goal, and learning in a mentor-mentee rela-
tionship. For both types of association I measured the geo-
graphical distance between related developers and compared
it to the average distance between developers (6,701km).
A markedly lower distance between cooperating developers
and the average could mean that developers prefer to co-
operate with those nearby. From such a result one could
theorize that geographical distance puts a strain in those
associations.

I obtained a list of cooperating developers by scanning the
commit logs with a rolling window of a single day, looking for
different developers who had committed code on the same
file within that day. I assumed that such instances would
indicate cooperation between those developers, because of
the changes’ proximity in the code space and time. From
the data I established 5,847 instances of cooperation be-
tween developers, and from those instances I kept the 4,010
for which I had at hand the geographic coordinates of the
two developers. The average distance between cooperating
developers is 6,489km, a number very close to the average
distance between any two developers. This fact indicates
that in the Freebsd project technical developer cooperation
is seldom influenced by the location of the developers.

During the time new Freebsd developers work with a men-
tor, they tag all their commit messages with a line indicat-
ing the name of the mentor who reviewed and approved the
corresponding change. By scanning those messages I estab-
lished a list of 167 mentor-mentee pairs. From those I kept
the 107 for which I had the locations for both members of
the couple, and used the developer coordinates to calculate
the distance between the mentor and the mentee (Figure
3). As one can see in Table 1, which summarizes the km
distances between any two developers and developers in a
mentor-mentee relationship, the mean and median distances
between mentors and mentees are lower, but not dramati-
cally lower than the those between any random Freebsd de-
velopers. In the mentoring case, even the numbers in the
first quartile designate distances within a small country or
state, not a city.

It therefore seems that some mentor-mentee relationships
are established between people in the same area (see for
example the fjoe–danfe pair on the top right of Figure 3), but
such relationships can (and do) also work across continents.

6. DISCUSSION AND CONCLUSIONS
The findings in the previous sections indicate that soft-

ware development by a widely dispersed loosely-coupled team
of developers is a practical proposition. The global distrib-
ution of the team members allows round-the-clock develop-
ment to take place, with no apparent ill effects on produc-
tivity, the quality of the code, and the density of defects.
Ad-hoc cooperation on specific work items does not seem to
be affected by distance. On the other hand, I found that the
mentoring relationship appears in some cases to be easier to
cultivate between individuals living closer together.

Some of my findings may be counterintuitive and even
contradict those of earlier studies that found diminished pro-
ductivity among distributed teams [11]. One should however
take into account two limitations of this work. First of all,
because the Freebsd project does not offer traditional offices
where collocated developers can cooperate with face-to-face
contact, the base case for the results reported here is de-
velopers working on their own or with developers living in
the same area. In addition, because Freebsd is a project
built mainly by volunteers vetted by their peers, a number
of factors differ from what one would expect to find in an
average software development shop: all developers are ex-
tremely motivated and highly competent, developers freely
choose the type and amount of work they will undertake
and when they will deliver it, and developers are typically
also users of the Freebsd system. These factors should be
further examined in the context of the relationship between
open and closed source software development [26, 21].

Based on the findings I outlined, two interesting questions
that one can pose are:

1. What is the meaning of distance in the context of
global software development?

2. What lessons can commercial software developers de-
rive from the results?

Clearly, when we examine problems of global software de-
velopment, there’s more to distance than geographical sepa-
ration. This is something we should take into account both
when we are looking at the distance between various loca-
tions, and when we are using an existing, supposedly non-
global, setup as a baseline. Distance can appear in a number
of different orthogonal dimensions. The physical distance we
saw at the end of Section 2 can be further elaborated by look-
ing into the travel distance between developers (commuting
from one edge to another in a large metropolis or across a
border may be more difficult than traveling from one central-
European city to another). We should also subdivide phys-
ical distance into on-work and off-work distance. I use the
last two terms refer to the distance between developers when
they are working (they could work on the same or on differ-
ent sites), and when they are resting (they could share com-
munal spaces, or hang out in the evening and on weekends
at the same venues). Then there is cultural distance: this
refers to differences in the language (or even dialect) spoken
by different developers, social norms and conventions, and
the culture’s predominant work ethic. Timezone distance

kris

arved

9817

edwin

12087

sem

9769

barner

326

markus

779

erwin

16177

az

15

ceri

brd

7357

brueffer

679

linimon

7722

roam

2216

simon

1121

joel

951

vs

8348

remko

661

krion

2119

brooks

7991

novel

2718

philip

142

sergei

2104

ehaupt

2717

150

clement

1406

lth

150

lawrance

16740

fjoe

4865

danfe

0

osa

2810

njl

8873

marks

8805

Figure 3: Distances (in km) in a part of the FreeBSD mentor-mentee graph.

can also crop up in remarkably different ways: developers
can share a timezone but be far apart, because they live on
different latitudes, or because they work on different shifts.
Finally, developers’ access to various collaboration technolo-
gies, such as a configuration management system, an issue
database, the phone, instant messaging, wikis, and mailing
lists, is another underappreciated measure of distance.

The extent to which the results presented here apply to
commercial software development is debatable. The lack of
a control group where developers would work in the same
office complex sharing lunch at a common cafeteria didn’t
allow me to verify whether Freebsd is paying the price of
global software development even in cases where its pro-
grammers live in the same city. On the other hand, many
existing commercial software development efforts are also
dispersed among physically separated offices or even sites.
For such cases, this work has demonstrated that in an envi-
ronment where developers routinely use a number of essen-
tial collaboration technologies, geographic distance becomes
immaterial.

Thus, the results described in the previous sections are
relevant to practitioners, and they also open some new re-
search questions. Given the generally positive results of this
study, commercial software development projects could, at
the very least, try to adopt and emulate some of the global
development practices of the Freebsd project. On the re-
search front one could also apply the research methodology
of this study to commercial software development projects
and see whether the same findings can be replicated there.

Acknowledgments
I wish to thank the members of the Freebsd community, for al-

lowing me to participate in the project and for providing me with

data and comments for this work. Panagiotis Louridas provided

many useful comments on earlier drafts of this work.

7. REFERENCES
[1] M. Akmanligil and P. C. Palvia. Strategies for global

information systems development. Information and
Management, 42(1):45–59, 2004.

[2] F. P. Brooks. The Mythical Man Month.
Addison-Wesley, Reading, MA, 1975.

[3] E. Carmel. Thirteen assertions for globally dispersed
software development research. In Proceedings of the
30th Hawaii Int. Conf. on System Sciences
(HICSS-30) — Volume 3: Information System Track
— Organizational Systems and Technology, page 445,
1997.

[4] E. Carmel. Global Software Teams: Collaborating
Across Borders and Time Zones. Prentice Hall, Upper
Saddle River, NJ, 1999.

[5] D. Damian. Workshop on global software
development. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering,
pages 667–668, New York, 2002. ACM Press.

[6] M. S. Elliott and W. Scacchi. Free software developers
as an occupational community: resolving conflicts and
fostering collaboration. In GROUP ’03: Proceedings of
the 2003 International ACM SIGGROUP Conference
on Supporting Group Work, pages 21–30, New York,
2003. ACM Press.

[7] J. Feller and B. Fitzgerald. Understanding Open
Source Software Development. Addison-Wesley,
Reading, MA, 2001.

[8] The FreeBSD Project. Style—Kernel Source File Style
Guide, Dec. 1995. FreeBSD Kernel Developer’s
Manual: style(9). Available online
http://www.freebsd.org/docs.html (January 2006).

[9] E. Hargreaves, D. Damian, F. Lanubile, and
J. Chisan. Global software development: Building a
research community. SIGSOFT Software Engineering
Notes, 29(5):1–5, 2004.

[10] J. D. Herbsleb and R. E. Grinter. Splitting the
organization and integrating the code: Conway’s law
revisited. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering,
pages 85–95, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[11] J. D. Herbsleb and A. Mockus. An empirical study of

speed and communication in globally distributed
software development. IEEE Transactions on Software
Engineering, 29(6):481–494, June 2003.

[12] J. D. Herbsleb and D. Moitra. Global software
development. IEEE Software, 18(2):16–20,
March/April 2001.

[13] J. D. Herbsleb, D. J. Paulish, and M. Bass. Global
software development at Siemens: Experience from
nine projects. In ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering,
pages 524–533, New York, 2005. ACM Press.

[14] P. Jalote and G. Jain. Assigning tasks in a 24-hour
software development model. In 11th Asia-Pacific
Software Engineering Conference, pages 309–315,
2004.

[15] D. W. Karolak. Global Software Development:
Managing Virtual Teams and Environments.
Wiley—IEEE CS Press, New York, 1998.

[16] R. E. Kraut and L. A. Streeter. Coordination in
software development. Communications of the ACM,
38(3):69–81, 1995.

[17] F. Lanubile, D. Damian, and H. L. Oppenheimer.
Global software development: Technical,
organizational, and social challenges. SIGSOFT
Software Engineering Notes, 28(6):2–2, 2003.

[18] P. Lawrence and N. Nohria. Driven: How Human
Nature Shapes Our Choices. Wiley, New York, 2001.

[19] E. MacGregor, Y. Hsieh, and P. Kruchten. Cultural
patterns in software process mishaps: incidents in
global projects. In HSSE ’05: Proceedings of the 2005
Workshop on Human and Social Factors of Software
Engineering, pages 1–5, New York, 2005. ACM Press.

[20] M. K. McKusick and G. V. Neville-Neil. The Design
and Implementation of the FreeBSD Operating
System. Addison-Wesley, Reading, MA, 2004.

[21] J. W. Paulson, G. Succi, and A. Eberlein. An
empirical study of open-source and closed-source
software products. IEEE Transactions on Software
Engineering, 30(4):246–256, Apr. 2004.

[22] C. Payne. On the security of open source software.
Information Systems Journal, 12(1):61–78, 2002.

[23] N. Saers. A project model for the FreeBSD Project.
PhD thesis, University of Oslo, May 2003. Available
online
http://niklas.saers.com/thesis/thesis.html.

[24] R. J. Sandusky and L. Gasser. Negotiation and the
coordination of information and activity in distributed
software problem management. In GROUP ’05:
Proceedings of the 2005 International ACM
SIGGROUP Conference on Supporting Group Work,
pages 187–196, New York, 2005. ACM Press.

[25] D. Spinellis. Code Quality: The Open Source
Perspective. Addison-Wesley, Boston, MA, 2006.

[26] D. Spinellis and C. Szyperski. How is open source
affecting software development? IEEE Software,
21(1):28–33, January/February 2004.

[27] I. Stamelos, L. Angelis, A. Oikonomou, and G. L.
Bleris. Code quality analysis in open source software
development. Information Systems Journal,
12(1):43–60, 2002.

