
Do Agile GSD Experience Reports Help the Practitioner?
Philip S. Taylor, Des Greer, Paul Sage

Queen’s University Belfast
Belfast BT7 1NN

Northern Ireland, UK
+44 (0)28 9097 4773

{p.taylor, des.greer, p.sage}@qub.ac.uk

Gerry Coleman, Kevin McDaid, Frank Keenan

Dundalk Institute of Technology
Dublin Road, Dundalk,

Co. Louth, Ireland
+353 42 9370200

{gerry.coleman, Kevin.mcdaid,
frank.keenan}@dkit.ie

ABSTRACT

Agile software development has steadily gained momentum and
acceptability as a viable approach to software development. As
software development continues to take advantage of the global
market, agile methods are also being attempted in geographically
distributed settings. In this paper, the authors discuss the
usefulness of published research on agile global software
development for the practitioner. It is contended that such
published work is of minimal value to the practitioner and does
not add anything to the guidance available before the existence of
current agile methods. A survey of agile GSD related publications,
from XP/Agile conferences between 2001 and 2005, is used to
support this claim. The paper ends with a number of proposals
which aim to improve the usefulness of future agile GSD research
and experience.

Categories and Subject Descriptors

D.2.9 [Management]: Software process models, programming
teams.

General Terms

Experimentation, Theory.

Keywords

Agile Methods, Global Software Development, Experience
Reports.

1. INTRODUCTION
Agile methods have become a viable option in the last five years
for many software development organisations in numerous
product domains. The literature related to agility in general and
specific agile methods is voluminous given its recent origins. The
presence of standard texts is coupled by an increasing amount of
research papers presented at conferences such as the International
Conference on eXtreme Programming and Agile Processes in

Software Engineering and the Agile International Conference, and
in journals such as IEEE Software [13] and Crosstalk [8].

This paper focuses on the research presented at the XP/Agile
conferences from 2001 to 2005 relating specifically to agile global
software development (GSD). The aim is to show that the research
presented, almost entirely of an experiential nature, is of minimal
value to the agile GSD practitioner or those about to become such
practitioners.

This paper is organised as follows. The second section provides a
short historical context for agile methods by discussing their
evolution. The third section presents some of the drivers for GSD
and outlines the guidance for practicing GSD from three
important texts. Section 4 assesses the contribution of agile GSD
experience reports from the XP/Agile conferences and Section 5
highlights the assumptions present in these experience reports.
The sixth section discusses the usefulness of the agile GSD
experience reports and Section 7 presents concluding thoughts
and proposals for the future of agile GSD research.

2. AGILE METHODS IN CONTEXT
This section will briefly present a historical evolution of agile
methods and thereby counter some of the misunderstandings that
software organisations may have regarding their validity in the
marketplace of software processes. For overviews of individual
agile methods the reader can consult Abrahamsson et al [1] and
Highsmith [12].

Larman and Basili [20, 21] have carefully provided the context for
current agile methods. They argue convincingly that many of the
practices which appear to be novel in agile methods, most notably
incremental and iterative development (IID), have actually been
practiced since software began to be developed in the 1950’s.

When software began to be developed there were two approaches,
IID and ad hoc. The waterfall process [29] was developed to
improve those ad hoc development efforts and not necessarily to
replace IID. The original waterfall approach is nuanced and Royce
expects iteration between each stage and even supports early
product release and close customer involvement. At some point a
crude version of the waterfall process became the dominant
approach, possibly due to its conceptual simplicity, and was used
on many projects which would have been better suited to Royce’s
fully nuanced waterfall approach or IID. The misuse of the
waterfall approach began to be readdressed in the early to mid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

1990’s, borrowing many IID practices, resulting in what would
later be known as Agile Methods.

Agile methods received their impetus from the short comings of
heavily planned processes and crude waterfall processes to be
successful with all varieties of software product and team and are
now in the IID family. Agile methods are not ad hoc and their
empirical nature requires discipline on the part of the team using
them.

3. GSD PREDATING AGILE METHODS
Given the context for agile methods it is clear that GSD, in some
form, will have been practiced before agile methods came into
existence and gained popularity. It should also follow that agile
GSD research and practice would build upon prior research and
experience. This section surveys some of the ideas regarding GSD
from the 1990’s.

3.1 Drivers for GSD
GSD can be defined as any aspect of software engineering that
involves the combined efforts of software professionals in
different locations separated by significant distances. The
potential for GSD is drawn from a number of business trends, two
of the most important being globalisation and outsourcing, which
can be witnessed readily in most established-economy countries
and some emerging-economy countries.

Karolak [15] states that global software development is inevitable
because of both “industry drivers, such as the supply and demand
of technical resources, and the increasingly global software
market, and business arrangements, such as strategic partnerships,
joint ventures, and global companies” (p. 10).

Outsourcing is not necessarily cross-continent but involves
software organisations engaging third parties in their development
effort. Links are forged nationally as well as internationally.
Meadows [27] highlights six issues, which are applicable to all
forms of GSD, making outsourcing increasingly viable:

• Increased move toward component-based software
development. Components of a system can be developed off-
site with more ease.

• Increased standardisation. Programming languages and
methodologies are not limited by culture and country
therefore reducing the learning curve for software/hardware
investments.

• Open systems adoption. Multiple development environments
can be used.

• Reduction in mainframe environments. Increasing use of
client/server environments reduces the capital investment
requirements in emerging-economy countries.

• Improved communications. Transporting software
engineering artefacts and bringing geographically distributed
developers together is not an insurmountable problem,
steadily becoming more cost effective and efficient.

• Rise of Integrated Project Support Environments (IPSE)
providing a co-ordinated set of software engineering and
management tools.

These issues are more prevalent within the current state of
software engineering indicating that GSD is yet more viable than
in the mid 1990’s.

3.2 GSD Guidance
This sub-section briefly summarises the contribution of three texts
to the area of GSD. The texts are Loftus et al [23], McConnell
[26], and Karolak [15] released in 1995, 1996, and 1998
respectively. McConnell is a general project management text
whilst Loftus and Karolak deal specifically with GSD. These texts
represent a broad spread in emphases. Loftus et al [23] focus on
detailed environment support for GSD whilst Karolak [15]
provides specific business structure advice. McConnell [26]
presents general high-level guidance.

As noted, Loftus et al [23] focus primarily on the tool support for
GSD and advise that the environment to support collaborative
software engineering must:

• Facilitate the sharing of project specific data.

• Hide confidential data.

• Address the problem of representing the same data in
different environments.

• Not demand radical reorganisation of existing support
environments.

• Be open to support the addition and removal of other
development tools and environments.

The eventual process recommended by Loftus et al. [23] when
practising GSD is as follows:

• Establish the nature of the relationships between the
collaborators. Outline the overall structure of the project, in
terms of activities, participants and channels of
communication.

• Analyse the technologies the organisations are bringing to
the project and decide how they fit together.

• Specify requirements for data sharing between collaborators,
in terms of the support tools, files, databases, and so on,
which will be used by the collaborators.

• Define logical software engineering environments within
which project data will be shared.

• Document the actual architectures and data models which
will be used.

• For each logical software engineering environment, specify
the common data model which defines the data shared.
Implement the data models in the actual environments on
which the logical software engineering environment is to be
built.

The work by Loftus et al [23] is fundamentally sound but with
regard to tool requirements is somewhat dated today. The rapid
improvement in Internet technologies has resulted in many of
their issues being essentially solved.

McConnell [26] recommends outsourcing as a best practice for
rapid development providing numerous reasons for its time-saving
potential including: staffing flexibility; experience and expertise;
contractually driven requirements specification; and reduced
feature creep. Addressing offshore outsourcing specifically,
McConnell [26] suggests several issues to keep in mind:

• Communication issues including reliable phone networks
and language differences.

• Time differences can be a help or hindrance but, in any case,
ensure that there is at least some overlapping time and a
reliable e-mail system.

• Travel will be necessary at each major milestone of the
outsourced development effort.

• Cultural, political and business characteristics of the country
to which development is being outsourced must be
understood

McConnell [26] lists five common risks and organisation-wide
consequences of outsourcing many of which are also summarised
by Aubert et al. [2]:

• Loss of visibility. Outsourcing can mean difficulty for
tracking development progress and it is imperative that the
contract stipulates when progress should be assessed and
reported.

• Transfer of expertise outside your organisation. Two things
can result from this feature of outsourcing: (1) your ability to
develop ‘in-house’ the same software diminishes; and (2) the
vendor’s knowledge of your data and algorithms increases.
An organisation should ask itself if the work being
outsourced is part of its core business and competency [10].
If it is, outsourcing might be expedient in the short term, but
it may reduce your competitiveness in the long-term.

• Loss of morale. Ensure that in-house developers are not
under the impression that their own jobs are at risk or that
they will never get included in interesting or challenging
pieces of development at which they can increase their own
knowledge and experience.

• Loss of control over future programs. You may lose the
ability to extend the development in future as the vendor
might make design and implementation decisions that limit
future flexibility. Your developers are also unfamiliar with
software developed outside their immediate departments.
Again an appropriate contract is a necessity.

• Compromise of confidential information. Be sure to identify
proprietary data and algorithms and ensure that this
intellectual property stays carefully protected.

Karolak [15] views responsibility and accountability to be crucial
and maintains that careful consideration can avoid many of the
major problems associated with global software development.
Responsibility is defined as the act of performing a task and the
resulting actions. Accountability is accepting ownership of the
activity regardless of who performed the tasks. Karolak’s
guidance for GSD is summarised in the following list:

• Finalise business arrangement. Identify and agree on the
type and structure of the business arrangement used in
developing the software, such as joint venture or strategic
partnership.

• Identify GSD team. Identify the structure, members, member
roles, and responsibilities of the team.

• Identify GSD technology. Identify the technical infrastructure
which team members will use to communicate with each
other.

• Define statement of work. Create the document used to
identify the software development responsibilities and
expectations between the customer and supplier.

• Divide the work. Divide the effort among software
developers by staffing, business relationship, expertise level,
and so forth.

• Identify tools and methods. Identify the software
development tools and design and development methods.

• Establish virtual software configuration control board

(SCCB). Identify the members of the SCCB, the method they
will use for software configuration management, and how
frequently they will meet.

• Identify and manage risks. Identify risks and devise a risk
mitigation strategy for each class of risk.

• Control documentation. Identify a control method and apply
it to all project documentation.

• Develop and apply test suites. Identify test suites during
software design and code development. During testing,
perform software verification and validation using test suites.

• Develop and apply a traceability matrix. Create the matrix
during requirements and update it during design and code
generation.

• Develop and apply a module version matrix. Identifies a
module or component to the configuration version it uses in a
software build.

• Establish maintenance review board. Its purpose is to review
requests for changes after the product has been delivered to
the customer.

• Control software quality. Perform activities that enhance the
quality of software and ensure that it meets the customer’s
expectations.

• Manage intellectual property. Perform activities, such as
design reviews, to determine if ideas generated during
development should be protected as intellectual property.

Although these texts have arisen from the context of software
development as practiced in the 1980’s and 1990’s, the general
guidance is applicable to numerous current software development
contexts including agile GSD. The guidance provided ranges from
general to specific with regard to both business practice and tool
support. An agile GSD practitioner could easily use the guidance
from these texts even though they were not written from an agile
methods context.

4. AGILE GSD RESEARCH PAPERS

ASSESSED
This section discusses the papers presented at the XP/Agile
conferences, from 2001 to 2005, addressing some aspect of agile
GSD. Summary categories are as follows:

• Industrial Experience - Is the paper an industrial experience
report?

• Experimental - Does the paper present experimental
research?

• Tools - Does the paper present new tools for agile GSD?

• Process Emphasis - Does the paper seriously address agile
software processes?

• Useful Practices - Does the paper present useful practices?

From a total of fourteen papers, eight are industrial experience
reports and seven present the results of experimental research.
Seven of the papers deal with tool support for agile GSD and ten
present useful practices for agile GSD. Four out of fourteen deal
specifically with distributed pair programming and do not present
other useful practices for agile GSD. None of the papers deal
adequately with process improvement issues for agile GSD.

None of the industrial experience reports make reference to the
GSD related texts summarised in Section 3.2. Only three of the
seven industrial experience reports [6, 24, and 14] make reference
to any GSD related texts [7, 19, and 22] and do not interact
seriously with them. Braithwaite and Joyce [6] actually chose not
to investigate the GSD literature before experimenting with
distributed Extreme Programming, utilising the XP concept of
courage out of context.

To assess the usefulness of the guidance presented in the
experience reports the existing GSD guidance presented in
Section 3.2 was consolidated in one list of nineteen points. The
GSD guidance was then extracted from the eight industrial
experience reports and compared to the existing GSD guidance to
find any overlap. Table 1 (see Appendix), as an example of the
assessment method, contains a comparison using Kircher et al
[18] and Danait [9]. These experience reports are separated by
four years and Kircher et al [18] deals specifically with XP while
Danait [9] addresses general agile development. It is clear that the
agile GSD experience reports do not add much guidance that is
not already in existence from standard GSD texts. Much use is
made of general GSD supporting technologies and the importance
of cross-location visits is emphasised.

When the agile GSD experience reports present a new practice it
is often not feasible. An example of distributed XP guidance
presented by Braithwaite and Joyce [6], typical of the papers
reviewed, is provided in Table 2 (see Appendix). They wisely
advocate balanced sites but their solution – make all sites equal in
skill and numbers – is impossible in many agile GSD scenarios.

5. ASSUMPTIONS OF AGILE GSD

EXPERIENCE REPORTS
It is important to carefully assess these experience reports and
isolate the assumptions inherent within them before their
usefulness can be commented on.

First, it appears that the agile GSD experience reports assume the
novelty of agile methods. However, as presented in Section 2,
agile methods have a clear historical context which contains
practical guidance for GSD. Section 3.2 contains a wealth of
guidance from only three texts. Lack of interaction with such
practical guidance as embodied in the general texts and research
publications is presumptuous and not typical of thorough research
methods.

Second, it is implicitly assumed that specific agile methods are
fixed whether being used in co-located development or GSD. It is
a valuable research activity to assume the fixed nature of agile
methods and explore their strengths and weaknesses for GSD.
However, such a research activity does not need to be repeated
continuously in experience reports with each yielding similar
results.

Third, there is often the assumption that specific agile method
practices such as pair programming or daily face-to-face meetings
must be replicated (often with webcams) in a geographically
distributed setting. Again, although this is a useful research
activity it is question begging. More thought needs to be given to
the pre-agile GSD practices and how their inherent discipline
might be a better risk balance to agile practices when performing
GSD. This is the approach taken by Boehm and Turner [3, 4, and
5].

Fourth, there is the assumption of development context. The agile
GSD experience reports reviewed do not discuss the nature of the
distribution, product domain, and contract arrangements. Unless
such context details are discussed it is nearly impossible for the
practitioner to seriously interact with the guidance provided in the
experience reports. Such issues are still the topic of research in
co-located agile development and present even greater risks to
agile GSD.

Fifth, there is an implicit assumption that agile methods are
mature and without criticism. It is noticeable that the agile GSD
experience reports do not interact with the texts and papers that
highlight perceived weaknesses in agile methods. Turk et al [30,
31] have discussed some of the problems they perceive with agile
methods. Their work is based primarily on examining the
underlying assumptions of agile methods and determining for
which development scenarios the assumptions do not hold. They
arrive at two groups of limitations:

Personnel limitations

• Limited support for distributed development environments

• Limited support for subcontracting

• Limited support for large teams
Product limitations

• Limited support for building reusable artifacts

• Limited support for developing safety-critical software

• Limited support for developing large, complex software

Such limitations are useful pointers to areas that will prove
difficult when practicing agile GSD. For example, developing
safety-critical software is an area of research for co-located agile
development but the risks will be magnified for agile GSD. Other
studies by Keefer [16] and McBreen [25] focus specifically on
perceived weaknesses with Extreme Programming (XP) [17].
They also note similar limitations to Turk et al [30, 31].

6. USEFULNESS OF AGILE GSD

EXPERIENCE REPORTS
Given the assumptions presented in Section 5 it is the position of
this paper that agile GSD experience reports are of minimal value
to the practitioner. Those involved in, or about to begin agile GSD
would be better advised to examine the texts and research relating
to general GSD and then carefully examine their specific
development context to discover the major risks.

The future for agile GSD research needs to essentially follow and
build upon the careful research and experience presented in such
forums as the ICSE Workshop on GSD and the ICSE conferences
in general. A good example of the potential of experience reports
can be found in Herbsleb et al [11]. They clearly present their

research method, context and resulting advice. Although the
advice does not contribute anything new to the field of GSD they
have at least been more rigorous in their research. Paasivaara and
Lassenius [28] present research and guidance related to the
practice of IID in GSD scenarios. This paper is also a good
example of an experience report providing a good overview of
context and research methodology.

It could be argued that the purpose of an experience report should
simply be to outline an experience irrespective of whether such an
experience and the resulting guidance has been documented
before. Such a view would not require any significant research on
the part of the report writers but would also mean the experience
report would require careful contextualizing by both the
practitioner and the researcher. However, what needs to be
avoided is the ‘reinventing the wheel’ syndrome when each new
experience report published simply presents the same resulting
guidance for agile GSD.

The 2004 ICSE workshop on GSD [28] had the following
emphases: feasibility of GSD; strategies for success of GSD;
research methods and challenges in GSD. Each of these emphases
needs to be applied to agile GSD research and practice.

The following issues emerged from the ICSE workshop as a
whole:

• Increased community building.

• More systematic application and documentation of research
methods.

• Building defined models and theories.

• Defining the state of the practice of software engineering.
All but the first of these emerging issues require further work in
agile GSD research:

Increased community building. On this issue the agile
practitioners and researchers are effective. There are numerous,
perhaps too numerous, agile community websites and e-mail lists
that distribute the latest thought on agile methods. The authors of
this paper have instigated such community building in Ireland by
organising and hosting agile events. A budget is set aside for
promotional material and visiting speakers. Many other groups in
numerous countries are doing the same activity.

More systematic application and documentation of research

methods. The XP/Agile conferences are beginning to show that
more serious thought is being given to research methods.
However, there is much research that relies on assumptions and
does not give due care to development context and historical GSD
practice and guidance.

Building defined models and theories. On this issue the agile
research is still relatively weak and it could be argued that defined
models and theories are antithetical to the principles of agile
methods. However, if agile research is to be useful to the broadest
range of practitioners it must have some rigor and thoroughness.

Defining the state of the practice of software engineering. A state
of practice survey has yet to be completed with reference to agile
GSD. In some sense the agile GSD experience reports are
documenting a state of practice but more needs to be done to
consolidate such experience reports and to carefully analyse the
assumptions underlying them.

7. CONCLUSIONS
This paper has aimed to show that agile GSD experience reports,
as published in the proceedings of the XP/Agile conferences, are
of minimal value to the agile GSD practitioner. The experience
reports surveyed were based on some inherent assumptions with
regard to: the historical context of agile methods; the evolving
nature of agile methods; the practices of agile methods; the
uniformity of development context; and the maturity of agile
methods.

It has been argued that the agile GSD guidance provided in the
experience reports does not add anything to the existing guidance
contained in a sampling of published textbooks. In effect, the
experience reports are reinventing the wheel with regard to agile
GSD practice.

In light of the survey and discussion presented in the previous
sections, the future direction and relevance of agile GSD research
and practice will be strengthened through the following efforts:

• The placing of agile GSD within the context of GSD. There
are benefits to specialised groups within the software
engineering community but not to the extent that the
specialised groups exclude the research contribution of each
other. Agile GSD seems to have suffered in this regard and
therefore it is proposed that the best agile GSD experience
based research be primarily part of the ICSE Workshop on
GSD for the Practitioner. Research presented in this
workshop should address the following points.

• Study the feasibility of agile GSD. Those with agile
experience and those with GSD experience need to work
together to establish the feasibility of agile GSD. It needs to
be determined if the same benefits of a co-located agile
approach can actually be achieved with agile GSD. It is
proposed that more careful integration with business
management research related to outsourcing and
globalization will help to provide a foundation for the
feasibility of agile GSD.

• Capturing the state of practice. The practitioners and
researchers of agile GSD need to collaborate and arrive at a
state of practice. It is proposed that agile GSD practitioners
and researchers from each continent begin to compile and
publish such a state of practice which can inform future agile
GSD research.

• Research methods and challenges. Based on the state of
practice the research methods need to be clearer with better
defined models and theories. The challenges also need to be
collated and used as a foundation for further improvements
in practice research. It is proposed that conference
workshops be the first place to discuss the methods and
challenges.

• Increased community building within agile GSD and with

other expertise. Business researchers can help inform on
issues such as contractual arrangements, revenue generation,
strategic partnerships and so forth. The human-computer
interaction community can provide valuable guidance with
regard to tool support for agile GSD. It is proposed that an
ontology of expertise that can inform agile GSD challenges
be developed and presented in a future workshop.

It is believed that implementing the above proposals will provide
a useful foundation for future agile GSD research.

8. REFERENCES
[1] Abrahamsson, P., Warsta, J., Siponen, M. T., Ronkainen, J.

New Directions On Agile Methods: A Comparative Analysis.
Proc. 25th Int. Conf. Software Engineering. IEEE Computer
Society (2003) 244 – 254

[2] Aubert, B. A, Dussault, S., Patry, M., and Rivard, S.
Managing the Risk of IT Outsourcing. 32nd Annual Hawaii

International Conference on System Sciences, IEEE
Computer Society (Digital Library Edition) 1999

[3] Boehm, B., Turner, R. Rebalancing Your Organization’s
Discipline and Agility. In: Maurer, F., Wells, D (eds.):
XP/Agile Universe 2003. Springer-Verlag, Berlin Heidelberg
(2003) 1 – 8

[4] Boehm, B., Turner, R. Using Risk to Balance Agile and
Plan-Driven Methods. IEEE Computer, Vol. 36(6), IEEE
Computer Society (2003) 57 – 66

[5] Boehm, B., Turner, R. Balancing Agility and Discipline – A

Guide for the Perplexed. Addison-Wesley (2004)

[6] Braithwaite, K. and Joyce, T. XP Expanded: Distributed
Extreme Programming. 6th International Conference on

eXtreme Programming and Agile Processes in Software

Engineering, Springer, 2005, pp. 180-188

[7] Carmel, E. Global Software Teams: Collaborating Across

Borders and Time Zones. Prentice Hall (1998).

[8] Crosstalk: The Journal of Defense Software Engineering.
Vol. 15(10), 2002, special issue on Agile Software
Development.

[9] Danait, A. Agile Offshore Techniques – A Case Study, Agile
2005, available at http://www.agile2005.org/XR17.pdf (last
visited March 2006)

[10] Hancox, M. and Hackney, R. Information Technology
Outsourcing: Conceptualising Practice in the Public and
Private Sector. 32nd Annual Hawaii International Conference

on System Sciences, IEEE Computer Society (Digital Library
Edition) 1999.

[11] Herbsleb, J. D., Paulish, D. J., and Bass, M. Global Software
Development at Siemens: Experience from Nine Projects.
26th International Conference on Software Engineering,
IEEE Computer Society, 2004, pp. 542 – 533

[12] Highsmith, J. Agile Software Development Ecosystems.
Addison-Wesley (2002)

[13] IEEE Software. Vol. 18(6), 2001, special issue on Extreme
Programming.

[14] Jensen, B. and Zilmer, A. Cross-Continent Development
Using Scrum and XP. 4th International Conference on

eXtreme Programming and Agile Processes in Software

Engineering, Springer, 2003, pp. 146-153

[15] Karolak, D. W. Global Software Development. IEEE
Computer Society Press (1998)

[16] Keefer, G. Extreme Programming Considered Harmful for
Reliable Software Development 2.0. Available at

http://www.avoca-vsm.com/Dateien-

Download/ExtremeProgramming.pdf (last visited January
2006). AVOCA GmbH 2003

[17] Kent, B., Andres, C. Extreme Programming Explained:

Embrace Change. 2nd Ed. Addison-Wesley (2005)

[18] Kircher, M., Jain, P., Corsaro, A., and Levine, D. Distributed
eXtreme Programming, XP 2001, available at

http://www.kircher-

schwanninger.de/michael/publications/xp2001.pdf (last
visited March 2006)

[19] Klepper, R. and Jones, W. O. Outsourcing Information

Technology and Services. Prentice Hall (1997).

[20] Larman, C. Agile & Iterative Development – A Manager’s

Guide. Addison-Wesley (2004)

[21] Larman, C., Basili, V. R. Iterative and Incremental
Development: A Brief History. IEEE Computer, Vol. 36(6),
IEEE Computer Society (2003) 47 – 56

[22] Lipnack, J. and Stamps, J. Virtual Teams: Reaching Across

Space, Time, and Organizations with Technology. John
Wiley & Sons (1st Ed. 1997, 2nd Ed. 2000)

[23] Loftus, C. W., Sherratt, E. M., Gautier, R. J., Grandi, P. A.
M., Price, D. E., and Tedd, M. D. Distributed Software

Engineering. Prentice Hall (1995)

[24] Martin, A., Biddle, B., and Noble, J. When XP Met
Outsourcing. 5th International Conference on eXtreme

Programming and Agile Processes in Software Engineering,
Springer, 2004, pp. 51-59

[25] McBreen, P. Questioning Extreme Programming. Addison-
Wesley (2003)

[26] McConnell, S. Rapid Development: Taming Wild Software

Schedules. Microsoft Press (1996)

[27] Meadows, C. J. Globalizing Software Development. Journal

of Global Information Management, 4(1), 1996, pp. 5-14

[28] Paasivaara, M. and Lassenius, C. Using Iterative and
Incremental Processes in Global Software Development. 3rd

International Workshop on Global Software Development,
2004, pp. 42-47
available at http://gsd2004.uvic.ca/docs/proceedings.pdf
(last visited January 2006)

[29] Royce, W. W.: Managing the Development of Large
Software Systems. Proc. WESCON. IEEE Computer Society
(1970) 1 – 9. Available for download at
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/
waterfall.pdf (last visited January 2006)

[30] Turk, D., France, R., Rumpe, B. Limitations of Agile
Software Processes. In: Wells, D., Williams, L. A. (eds):
XP/Agile Universe 2002. Springer-Verlag, Berlin Heidelberg
(2002) 43 – 46

[31] Turk, D., France, R., Rumpe, B. Assumptions Underlying
Agile Software Development Processes. Journal of Database

Management, Vol. 16(4), Idea Group Inc (2005) 62 – 87

9. Appendix
Table 1. A Comparison of Existing GSD Guidance with Agile GSD Guidance

Table 2. Typical Example of the Problems and Solutions for Agile GSD

Practice Problem and Solution

Problem – Trust and cooperation between team members can break down. One team

Solution – Maintain single team identity and encourage non-business communication.

Problem – The difference in skill and experience can leave decisions to one particular team/site. Balanced sites

Solution – Make all sites equal in skill and numbers.

Problem – Remote team members cannot easily discuss project issues. Distributed
standup

Solution – Have a video conference session running whenever possible. Force an overlap if required.

