
Risk Management with Enhanced Tracing of
Requirements Rationale in Highly Distributed Projects

Matthias Heindl, Stefan Biffl

Institute of Software Technology and Interactive Systems
Vienna University of Technology, Favoritenstraße 9-11/188, A-1040, Vienna, Austria

{matthias.heindl; stefan.biffl}@qse.ifs.tuwien.ac.at

ABSTRACT
A recent survey with project managers of highly distributed
projects at Siemens Program and Systems Engineering (PSE)
brought up as main challenges: more severe communication
hurdles compared to collocated teams and higher effort to
communicate requirements in the team. In this paper, we address
requirements tracing options to facilitate risk management with
requirements clarification, collaboration, and knowledge
management. We propose concepts for enhanced requirements
tracing that include the rationale for requirements, related
decisions, their history; and stakeholder value propositions. We
sketch a cost-benefit model that helps the project manager to
understand what tracing approach is worthwhile to address
requirements risk in a project. The outcome lays the basis for
planning empirical studies at PSE.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies, tools.

General Terms
Management, Theory

Keywords

Global software engineering, risk management, requirements
management, requirements traceability, knowledge management,
value-based software engineering.

1. INTRODUCTION
Siemens Program and System Engineering (PSE) is an
independent research and development entity within the Siemens
group with more than 6,000 employees. PSE software and
systems development projects cover a broad range of application
domains: telecommunication and information technologies,
automation and control, power, transportation, medical solutions,
components, and space technology. There are several approaches

at PSE to provide sufficient competence for ensuring good project
performance and problem solving:

• I the large pool of employees there are many skilled people
who are able to handle challenges and problems because of
their expertise and experience.

• PSE Support Centres address success-critical topics to (a)
bring employees with similar problems together, and (b)
support communication of experience that could help to
solve a current problem. Support Centres provide training
and coaching for areas like project management,
configuration management, usability, and testing.

• A horizontally organized subdivision of PSE, the
Competence Base, provides experts with line-of-business-
independent technology knowledge to the other subdivisions
or covers peaks in demand [16].

These approaches have worked well for handling typical
challenges in collocated software development projects. However,
in recent years Siemens PSE increasingly started globally
distributed development projects supported by new permanent
offices in Eastern Europe, Turkey, and China. Several factors
have accelerated this trend towards more distributed development:

• Business advantages such as proximity to the market, the
pressure to decrease the time to market (around-the-clock
development made possible with teams in different time
zones);

• the need for geographical flexibility to get access to new
business and technology capabilities from merger-and-
acquisition opportunities; and

• the formation of virtual teams and corporations based on the
cost-competitive use of scarce resources in a global resource
pool [13].

While only few large projects have all project participants
working collocated at one site, we see major differences in
handling distributed and so-called highly distributed development
projects. We characterize a highly distributed project as a project
with team members in two or more countries. Such projects
typically exhibit the following characteristics:

• By definition not all team members can work at the same
location; travel delay between the project headquarter and
other locations is significant, e.g., more than 2 hours.

• Thus, there is less opportunity for flexible direct (face-to-
face) communication: regular meetings occur less often than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GSD’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

bi-weekly; ad-hoc meetings are very hard to achieve due to
the traveling delay or high costs to establish meetings, e.g.,
considerably more than 1,000 Euro even for a short meeting.

• The projects are rather long-term projects (longer than a
year) and their infrastructure includes configuration
management and requirements management tools due to
considerable staff turnover.

The goal of project managers and project participants in all
projects is to deliver according to stakeholders’ expectations on
products and services; cost, quality, and timely delivery.
However, highly distributed teams in global software
development projects have to address new challenges, such as
project set-up, progress control, day-to-day communication, and
even management of cultural issues.

The support centre for project management at Siemens PSE
commissioned a survey with project managers in highly
distributed projects to identify the most important challenges
coming from global software development as a first step to plan
focused future support activities. The survey provided a more
detailed insight into practitioners’ current distribution-related
problems in order to highlight the needs for improvements.
While some of the factors are highly relevant for development
projects in general, the survey established their specific relevance
in the context of large-scale global software development.
The survey results showed generally high relevance of
requirements-related topics (see table 1). Main results of the
survey were:

• Misinterpretation (32% of survey participants rated this as
frequent and very important challenge) and unclear rationale
(38%) of requirements are major project challenges in highly
distributed projects, resulting in delays and increased effort
to explain requirements;

• Both the clear and agreed statement of requirements (more
than 60%) and the clear link between requirements and
business objectives (36%) are major success factors, if
present. However, especially in highly distributed projects it
is often hard to improve on these success factors if they have
not been introduced and maintained right from the start.

The project managers in the survey rated future risk management
countermeasures that could come from the support centre as
important for addressing these issues: methods and tools for
clarifying and tracing requirements in the project context, and
more efficient collaboration tool support.

In this paper, we focus on issues of requirements tracing as basis
for better requirements clarification, communication, and for
reaching a common understanding of requirements.

The survey findings prompted us to propose concepts for
extending the standard PSE requirements traceability approach
with requirements rationale and with “value traces” that help
communicating relationships between business objectives,
requirements, and consequently technical solution approaches.

Table 1 Requirements-related project success factors and

project challenges

Most important success factors % of partpts.

Clear and agreed statement of requirements 60%

Clear link of requirements to business objectives 36%

Most important project challenges

Unclear rationale of requirements 38%

Misinterpretation of requirements 32%

We developed two concepts for enhanced requirements tracing
that aim at including (a) the rationale for requirements, such as
related decisions and requirements history, or (b) stakeholder
value propositions. A next step is to gather empirical evidence for
the effect of tracing in highly distributed projects. The long-term
vision is to provide tool support for trace-based requirements-
centered knowledge management in highly distributed projects
based on the findings of the empirical studies.

The available approaches for requirements tracing are likely to
bring different costs and benefits. Thus we present an initial risk-
cost-benefit model to help the project manager to assess the
impact of a tracing approach on his project.

The remainder of this paper is structured as follows: Section 2
summarizes of related work on global software development and
requirements traceability. Section 3 explains the research issues
and solution approaches we derived from the survey results.
Finally Section 4 provides a summary and suggests further work.

2. RELATED WORK
This section provides an overview on related work on global
software development and requirements traceability.

2.1 Tracing in Global Software Development
There are several studies that identified a broad range of
challenges in distributed projects. Some studies identified
problems related to cultural diversity, process and tools [13],
whereas other studies focused on collaboration and requirements-
related issues, like obtaining a common understanding, analysis
and negotiation of requirements in distributed projects [3][4][5].
Researchers have recognized specific skills that have to be taught
to software engineering students to cope with the complexities of
distribution and described their approaches and strategies for
teaching global software development [5][20].

There are two ways to capture relationships between requirements
and development artifacts in projects that are large and complex
enough to warrant the effort of tracing: (a) by capturing
requirements rationale, etc. in documents, usually coming from
well-structured synchronous communication, e.g., out of a
workshop, or constructed by a central keeper, and (b) access to
less structured documents that emerge from asynchronous project
communication such as e-mails and informal memos.
Interestingly, most research has been focused on how to support
requirements understanding using synchronous means, like
videoconferencing, and how to analyze the quality of such
approaches. However, in addition to its immediate benefits

synchronous communication may add risks to long-term projects
as such communication is typically not archived and thus not
easily searchable.
Although some issues can only be settled with synchronous
communication, it is usually much more costly than asynchronous
communication and limits some advantages of globally
distributed work. To reduce the need for costly synchronous
communication and to better support collaboration in highly
distributed projects, we propose to strengthen requirements
tracing of asynchronous communication documents to clarify
requirements by documenting and relating information that is
needed to understand the background and context of a
requirement.

2.2 Requirements Traceability Models
We see requirements tracing as part of project risk management as
requirements communicate the system properties to the
developers. If the content, importance, or context of requirements
are not well understood in a project, the resulting confusion is a
major cause for many follow-up risks and inefficiencies in a
project that cause external problems, such as project delay, low
productivity, or lower system quality.
Requirements tracing is the ability to follow the life of a
requirement in a forward and backward direction [11]. Gotel and
Finkelstein mention some basic techniques for requirements
tracing (RT), namely cross referencing schemes [9], key phrase
dependencies [14], templates, RT matrices, hypertext [15], and
integration documents [17]. These techniques differ in the
quantity and diversity of information they can trace between, in
the number of interconnections between information they can
control, and in the extent to which they can maintain requirements
traces when faced with ongoing changes to requirements. There
are also tools to semi-automate requirements tracing [6][18].
There are several traceability models that differ in the types of
artifacts to be traced. Most projects do not use a systematic
tracing approach, but leave it to individuals to perform ad hoc
tracing as needed to perform development tasks, such as test
planning, checking requirements for consistency, or assessing the
likely impact of change requests. Ad hoc tracing has several
disadvantages: e.g., experts who have a strong mental model may
not need to keep explicit traces; however, later in development the
memory of traces may not be sufficient and much more costly and
time-consuming to obtain. Consequently, recent software
engineering standards (like CMMI) demand basic systematic
tracing between requirements and artifacts such as design, pieces
of code, and system test cases.
Ramesh and Jarke proposed a high-end traceability model [22]
that extends the basic standard (see Figure 1): in addition to the
white boxes (traced in the basic standards-mandated model) the
gray boxes represent artifacts that would be important for some
project manager to have trace information on but are usually not
traced to in practice. Reasons may be low perceived value for
standard projects with a low to medium degree of distribution due
to added costs for tracing and unclear actual benefits in a project
compared to ad hoc tracing and basic tracing as mandated by
standards.

Requirements

Rationale Decisions

Alternatives

Pieces of CodeTest Cases

Design

Is based on affect

evaluate

determine

defines

test

Are derived
from

xyz Usually performed in practice

xyz Usually NOT performed in practice

Legend

Figure 1 Extended traceability system [19].

Traces from requirements to their rationale, requirements
decisions, and alternatives that were initially considered become
increasingly relevant in the context of a highly distributed project
as these traces provide benefits for requirements understanding in
such projects that are hard to obtain otherwise, especially if
informal communication in the team is costly or just does not
occur.
However, the cost of tracing can be considerable. Consequently,
value considerations are fundamental to motivate sustainable
systematic requirements tracing activities [1]. Initial case studies
and value-based software engineering analyses on systematic
tracing have provided evidence on options to save considerable
parts of tracing costs without sacrificing substantial benefits
[7][8][12].
Requirements tracing can be seen as an investment into making
the relationships between requirements and key development
artifacts explicit and usable as basis for management and
development activities. Thus project participants should be
motivated to invest into tracing as long as they see a positive
return on the invested effort. However, there are very few models
supported by empirical evidence, which balance the perceived
risks and the effectiveness of traces as risk counter measures, and
thus would support economic trace planning. Thus project
participants have a hard time to assess the likely return on tracing
effort and in practice fall back to the default of ad hoc tracing.

3. RESEARCH ISSUES AND SOLUTION
APPROACHES
In this paper we aim at addressing the issues raised from the
survey with PSE project managers by supporting requirements
clarification and understanding in highly distributed projects with
appropriate traceability concepts depending on the project context
and risks.
Project managers have several options for tracing: (1) non-
systematic ad hoc tracing as default practice; (2) basic tracing as
mandated by standards (see white boxes in Figure 1); (3)
extended tracing with a schema that captures rationale for
(unusual) requirements in order to support requirements
clarification (see grey boxes in Figure 1); and (4) tracing
requirements back to stakeholder value models in order to better
understand the alignment of requirements with stakeholder value
propositions (see black box in Figure 2).
Imagine an example where multiple distributed project teams that
implement a web-based collaboration platform together for a
customer company. A key requirement in this context is the http-
server performance, which is mainly measured by the number of
prospected clients requesting the server concurrently. The
prospected customer, e.g., a large company that wants to improve
collaboration in their distributed projects by this collaboration
platform, defines the http-server performance by the following
performance requirement (PR):
PR: “The used http-server allows up to 50 concurrent client
requests.“
The requirement alone does not explain anything about its context
and therefore a technical architect has multiple options to select
an adequate server component, ranging from buying a new low-
or high-performance server or using a server already in use at the
customer site. All these options would meet the given
requirement.
Documenting the context of such a requirement, e.g., by capturing
the requirement’s rationale (RR) for this requirement shapes the
architect’s understanding and helps to optimize his component
selection decision by getting a better comprehension of the
customer’s situation:
RR: “Usually, there are not more than 50 clients in our projects
that will use the designated collaboration platform.”
For some unusual or complex requirements, these rationale bring
the technical architect a better imagination of what the customer
really wants.
The risk of not capturing the rationale could be that the architect
made a sub-optimal component selection decision, e.g., uses a
high-performance server which provides a high performance but
is too expensive, while a low performance server would be
sufficient.
One way to elicit requirements are requirements workshops,
where the key stakeholders come together to define their
requirements. Capturing the alternatives for requirements, e.g.,
another performance level, that were under discussion helps team
members that were not joining the decision making to understand
the why of a requirement. Alternatives of server selection range
from low- to high-performance servers.

Modelling the stakeholder value-propositions behind
requirements is an additional means to optimize decisions at the
technical level. For example, the following value statement
illustrates the (potential) value the desired system has for the
customer:
Value statement: “The company’s strategy is to extend the project
collaboration platform to a company-wide collaboration platform
after a few years, when the platform proves to be successful in
projects.”
Such value models represent the stakeholders’ interests, and the
rationale for requirements can be dervived from them. Finally,
modeling these stakeholder value propositions and the derived
rationales, results in selecting a high-performance server for the
web-based collaboration platform due to the potentially very high
number of prospected users after a few years. At least, the
necessity for scalability of the platform was defined.
While the tracing options (1) and (2) provide support for change
impact analysis and address the risk of very high additional effort
to implement requirements changes in related artefacts, tracing
options (3) and (4) illuminate the context of a requirement and
therefore prevent wrong or sub-optimal architecture decisions,
e.g., component selection decisions.
Tracing rationale and stakeholder value propositions – as
additional documentation effort - seems to be especially valuable
in highly-distributed projects, where development team members
are distributed and need a clarifying documentation of
requirements in order to perform their tasks properly.
Furthermore, traceability between value models, rationale and
requirements improves road mapping (customer’s strategy), trade-
off decisions, and release planning, as implementation can be
oriented towards these explicit value models.
In this section we provide research issues for the empirical
investigation of enhanced tracing concepts and sketch a risk-
based cost-benefit model that helps the project manager to
understand what tracing approach is worthwhile to address
requirements risk in a project. The outcome lays the basis for
planning empirical studies at PSE.

3.1 Enhanced requirements tracing
The PSE survey results illustrate that there are still hurdles to take
concerning requirements clarification. As face-to-face
communication is hard to establish in highly distributed projects,
tracing rationale could be a more efficient means to clarify
requirements than currently used approaches of requirements
clarification like telephone conferences.
The concept for enhanced tracing, proposed in [19], shows
currently unused potential to clarify requirements. However, the
cost-benefit for the enhanced traceability model (see Figure 1)
needs further investigation to evaluate its benefit as
countermeasure for risks stemming from unclear requirements in
highly distributed projects.
Document history can explain very much of the “Why” of a
current requirement version, and capturing this history, as well as
related decisions and rationale for each requirement supports the
understanding of a requirement. The “artifacts” we want to trace
in order to support requirements clarification in highly distributed
projects by tracing are:

• Rationale: explaining the “Why” of requirements, especially
unusual requirements, e.g., why a certain performance is
needed.

• Decisions related to requirements: history of decisions made
in order to understand the history of a requirement, e.g., why
a certain requirement was selected to be implemented;
Especially in highly-distributed projects, which, from our
point of view, are comparable to projects with high stuff
turnover, in terms that documenting the decisions made by
others (in the past) helps to understand the status-quo.

• Alternatives representing the ways of thinking that happened
before decisions in the past, e.g., which http-server options
existed, and why other options were decided not to be
suitable.

An interesting issue is how to capture the rationale of
requirements, where it really matters. In highly distributed
projects, decisions are often made by groups of stakeholders, e.g.,
in workshops where requirements are negotiated. As often not all
stakeholders can participate in these workshops there is a need to
document the workshop outcomes for project members that did
not participate (and future project participants). In the workshop,
some of the emerging requirements may seem clear to all
participants, while others obviously warrant a more detailed
description of their rationale for project members that did take
part in the workshop.
To ensure the documentation of unclear requirements (a) the
moderator can ask for clarification in the workshop; or (b)
immediately after the workshop when a review can be conducted
that raises issues early, when the memory of participants is still
fresh. Once basic tracing is established, extended tracing takes
little extra effort if done as soon as new requirements emerge.
In PSE practice, there is a point in time, a “requirements
validation milestone”, where the requirements specification is
reviewed and released. This is the latest point, where all
requirements have to be clarified, e.g., by tracing rationale.
A cost-benefit model for assessing the different tracing
approaches weighs the extra cost for tracing with the benefits of
reduced risk and more efficient development. The costs of tracing
mostly come from the effort involved in generating, reviewing,
and maintaining traces to ensure their correctness over time. The
benefits of tracing come (a) from the probability and impact of
risks in a project if systematic traces are not available, (b) from
the effectiveness of the generated traces a to counter
requirements-related risks, and (c) less tangible soft factors from
generally more efficient development work based on tracing
information. In practice the risk exposure depends on number of
requirements and artifacts, on their volatility, the share of
requirements that need extensive clarification. In the surveyed
projects we found the following cost drivers: (1) communication
effort necessary to clarify a requirement; (2) number of project
participants involved in order to clarify a requirement; and (3)
effort to document a requirement, e.g., in a requirements
management tool.
Research issues are studies to gather empirical evidence:

• To identify types of highly distributed projects at PSE that
could benefit from capturing rationale for unusual
requirements;

• To identify for which requirements such additional tracing
effort pays off, e.g., tracing rationale and stakeholder value
models for an easy-to-understand requirement (“the
background color should be green”) would be an overkill,
whereas it would be crucial for more unusual requirements to
reach a common understanding of all distributed project
members. Furthermore, requirements exist at different levels
of abstraction. Empirical analysis on which level such
tracing approaches are valuable is needed.

• To perform a risk analysis to identify the risks of not
documenting rationale of requirements;

• To identify processes for these project types that describe
how to capture rationale for requirements and for which
kinds of requirements these traces between rationale and
requirements are extremely valuable;

• To gather data for cost-benefit analyses of tracing rationale
in comparison to currently used approaches of requirements
clarification.

Our analysis will be oriented towards Boehm’s slogan: “If it is
risky not to specify a requirement, then specify it; if it is risky to
specify it, then do not specify it.” [2]
Over-specifying requirements brings the risk of being too
expensive, whereas under-specifying requirements, by omitting
tracing rationale for unclear or unusual requirements results in
expensive additional communication and clarification effort that
might cause delays.
By analyzing the points above we want to find out in which
projects and for which requirements tracing rationale pays off and
for which not.

3.2 Linking requirements to business value
Extended tracing captures the stakeholder rationale for a
requirement, which allows the developer, in principle, to
understand the reason for a requirement or ask the stakeholder
who originated the requirement. Another strategy links
stakeholder business objectives into the traceability model in
order to identify interdependencies between requirements in a
project and the project’s business superstructure, as depicted in
Figure 2.
The need to extend the traceability model was raised by the
survey we performed at Siemens PSE, which raised need to have
clear links between business objectives and requirements. This
serves to set priorities for product release planning, road mapping,
and to review the actual value contribution of a project at a
milestone rather than just reporting resource usage and
requirements fulfillment.

Similar to defining utility models for negotiation, each
stakeholder can define his utility model by defining a small
number of orthogonal key measures, e.g., availability, usability,
which allow the stakeholder to describe the value that a system
variant has for him. Tracing requirements back to these
value/utility models allows better alignment of project-internal
decisions, e.g., design or architecture decisions, and also release
planning decisions.

These “value traces” (traces between requirements and
stakeholder utility models that describe the value that a

stakeholder has from implementation of the requirement) have
several benefit for project managers:

• Projects have to be able to respond to feedback and also to
be able to keep pace weekly or monthly with changing
business or organizational requirements. Projects must
continuously monitor their relevance to stakeholders [10].

• Requirements are changing faster due to external changes
[10]; the impacts need to be understood in the business
context.

• Clear vision of the value contribution of a project can make a
huge difference for the project outcome as it provides a
common focus for rational decision making, e.g., for release
planning, system design, and quality assurance planning.
When people understand the overall direction, they tend to
make supporting local decisions.

These traceability extensions are a means to support requirements
understanding by making the value transparent throughout the
project. In this context, we want to empirically evaluate how
value traces can be realized. The realization contains value
definition, value translation, and value controlling as proposed in
value-based software engineering [1].

• Value definition (on business level): Linking requirements to
business value and/or business cases. Value can be defined
as set of win conditions that represent the long-term
stakeholder value proposition, not just initial user needs.

• Value translation: Establishing traceability between win
conditions and requirements supports understanding of the
value of a single requirement. It is further work to
empirically evaluate the benefit of such value traces.

• Value controlling: Unlike so-called earned-value systems,
which actually track used costs and resources, value traces
allow real value-based project controlling by checking the
alignment of project results to current value propositions.

Traceability models extended with value traces help to address
risks from changing stakeholder utility values in the project
context. These changes may happen without changing
requirements, but may have a major impact on project value. Thus
traces between requirements and stakeholder value can support
the project manager to be aware of these links and check them
regularly for validity. The effort for generating and maintaining
value traces is part of risk management; however, with proper
support that propagates the links throughout the distributed
developers, this knowledge can benefit a range of management
and design decisions in the project.

4. SUMMARY AND FURTHER WORK
In this paper, we took a risk management view on requirements
tracing options to facilitate risk management in order to support
requirements understanding in highly distributed projects. We
proposed concepts for enhanced requirements tracing that
included the rationale for requirements, related decisions, their
history; and stakeholder value propositions. We provided research
issues for the empirical investigation of enhanced tracing
concepts and sketched a risk-based cost-benefit model that can

help the project manager to understand what tracing approach is
worthwhile to address requirements risk in a project.

Next step is the empirical investigation of the projects that were
the basis for reporting in the PSE survey. The survey results
identified risks from requirements management as a key focus for
improvement. Thus, we will make a classification of the actual
challenges in the different projects to compare the perceived and
actual risks and the likely cost-benefit of tracing counter
measures.

Requirements

Rationale Decisions

Alternatives

Pieces of CodeTest Cases

Design

Business
Objectives
(VALUE)

Is based on affect

evaluate

determine

defines

test

Are derived from

drive

xyz Usually performed in practice

xyz Usually NOT performed in practice

Legend

xyz Value extension of traceability
model (research issue 2)

Fig. 2 Traceability Model enhanced with Stakeholder Value.

An important aspect that influences the cost and quality of tracing
is tool support. We plan to perform case studies in highly
distributed projects at Siemens PSE to the feasibility,
effectiveness, and efficiency available tools, usually a
configuration management tool, and a requirement management
tool, and tool extensions to support requirements traceability.

REFERENCES
[1] Biffl S., Aurum A., Boehm B., Erdogmus H., Grünbacher P.:

Value-based Software Engineering; Springer; 2005

[2] B. Boehm, “Software risk management”, IEEE Computer
Society Press, 1989

[3] Damian, D.E., Zowghi, D., Requirements Engineering
challenges in multi-site software development organizations.
Requirements Engineering Journal, 2003. 8: p. 149-160.

[4] D. Damian, D. Zowghi, An insight into the interplay between
culture, conflict and distance in globally distributed
requirements negotiations, Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS’03), 0-
7695-1874-5/03 $17.00 © 2002 IEEE

[5] D. Damian, A. Hadwin, Ban Al-Ani, Instructional design and
assessment strategies for teaching global software
development: a framework

[6] A. Egyed, “A Scenario-Driven Approach to Traceability”,
Proceedings of the 23rd International Conference on
Software Engineering (ICSE), Toronto, Canada, May 2001,
pp. 123-132

[7] Alexander Egyed, Stefan Biffl, Matthias Heindl, Paul
Grünbacher, “Determining the cost-quality trade-off for
automated software traceability”, November 2005,
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering ASE '05

[8] Alexander Egyed, Stefan Biffl, Matthias Heindl, Paul
Grünbacher, “Early traceability concepts: A value-based
approach for understanding cost-benefit trade-offs during
automated software traceability, November 2005,
Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering
TEFSE '05

[9] M.W. Evans, “The Software Factory”, John Wiley and Sons,
1989

[10] Tom Gilb, “Competitive Engineering”, Elsevier Butterworth-
Heinemann, 2005

[11] O. C. Z. Gotel, A. C. W. Finkelstein, „An analysis of the
requirements traceability problem“, 1st International
Conference on Requirements Engineering, pp. 94-101, 1994

[12] Matthias Heindl, Stefan Biffl, “Requirements: A case study
on value-based requirements tracing”, September 2005
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering ESEC/FSE-13

[13] Herbsleb, J., Paulish, D., Bass, M., Global Software
Development at Siemens:Experience from Nine Projects,
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.

[14] J. Jackson, ”A Keyphrase Based Traceability Scheme”, IEE
Colloquium on Tools and Techniques for Maintaining
Traceability during Design, 1991, pp.2-1-2/4

[15] H. Kaindl, “The Missing Link in Requirements
Engineering”, ACM SigSoft Software Engineering Notes,
vol. 18, no. 2, pp. 30-39, 1993

[16] Stefan Lasser, Michael Heiss, “Collaboration Maturity and
the Offshoring Cost Barrier: The Trade-Off between
Flexibility in Team Composition and Cross-Site
Communication Effort in Geographically Distributed
Development Projects”, Proceedings of the IEEE
International Professional Communication Conference
(IPCC 2005), Limerick, Ireland, 10-13 July 2005, Thread:
Engineering Management, pp. 718-728

[17] M. Lefering, “An Incremental Integration Tool between
Requirements Engineering and Programming in the Large”,
Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, California, Jan. 4-6,
pp. 82-89, 1993

[18] F.A.C. Pinheiro, J. A.Goguen, “An Object-Oriented Tool for
Tracing Requirements”. IEEE Software 13(2), 1996, 52-64.

[19] B. Ramesh, M. Jarke, “Towards Reference Models for
Requirements Traceability”, IEEE Transactions on Software
Engineering, Vol. 27, No.1., 2001

[20] I. Richardson, A.E. Milewski, P.Keil, N. Mullick,
Distributed Development – an Education Perspective on the
Global Studio Project

